Normal view MARC view ISBD view

TORUS 2 -- toward an open resource using services [electronic resource] : cloud computing for environmental data / edited by Dominique Laffly.

Contributor(s): Laffly, Dominique.
Material type: materialTypeLabelBookSeries: Computer engineering series: Publisher: London : Hoboken : ISTE, Ltd. ; Wiley, 2020Description: 1 online resource (323 p.).ISBN: 9781119720553; 1119720559; 9781119720539; 1119720532.Subject(s): Cloud computing | Open source software | Cloud computing | Open source softwareGenre/Form: Electronic books. | Electronic books.Additional physical formats: Print version:: TORUS 2 - Toward an Open Resource Using Services : Cloud Computing for Environmental DataDDC classification: 004.67/82 Online resources: Wiley Online Library
Contents:
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface: Why TORUS? Toward an Open Resource Using Services, or How to Bring Environmental Science Closer to Cloud Computing -- Structure of the book -- Part 1: Earth Science Remote Sensing -- Introduction to Part 1: From Above We Can See Earth Better -- 1. A Brief History of Remote Sensing -- 1.1. History -- 1.2. Fields of application -- 1.3. Orbits, launchers and platforms -- 1.4. The acquired data are digital images -- 1.5. So what is remote sensing? Some definitions -- 1.6. Notes -- 1.7. References -- 2. Physics of RS
2.1. Introduction -- 2.2. Remote sensing -- 2.3. Fundamental properties of electromagnetic waves -- 2.3.1. Wave equation and solution -- 2.3.2. Quantum properties of electromagnetic radiation -- 2.3.3. Polarization, coherence, group and phase velocity, the Doppler effect -- 2.4. Radiation quantities -- 2.4.1. Spectral quantities -- 2.4.2. Luminous quantities -- 2.5. Generation of electromagnetic waves -- 2.6. Detection of electromagnetic waves -- 2.7. Interaction of electromagnetic waves with matter -- 2.7.1. Overview -- 2.7.2. Interaction mechanisms
2.8. Solid surfaces sensing in the visible and near infrared -- 2.8.1. Wave-surface interaction mechanisms -- 2.9. Radiometric and geometric resolutions -- 2.10. References -- 3. Image Quality -- 3.1. Introduction -- 3.2. Image quality -- geometry -- 3.2.1. Whiskbroom concept -- 3.2.2. Pushbroom concept -- 3.2.3. Full frame concept -- 3.2.4. Optical geometric distortions -- 3.2.5. Relief distortions -- 3.2.6. Inverse location model -- 3.2.7. Direct location model -- 3.2.8. Root Mean Square (RMS) validation -- 3.2.9. Resampling methods
3.2.10. Image geometric quality to assume geographical space continuity -- 3.3. Image quality -- radiometry -- 3.3.1. Radiometric model of the instrument -- 3.3.2. Radiometric equalization and calibration -- 3.3.3. Radiometric signal noise reduction (SNR) -- 3.3.4. Radiometric physical value -- 3.3.5. Image quality -- resolution -- 3.4. Conclusion -- 3.5. Notes -- 3.6. References -- 4. Remote Sensing Products -- 4.1. Atmospheric observation -- 4.1.1. Introduction to common atmospheric gases and particles -- 4.1.2. Introduction to meteorological parameters
4.1.3. Atmospheric observation from satellite -- 4.2. Land observation -- 4.2.1. Introduction -- 4.2.2. Land cover/land use classification system -- 4.2.3. Legend -- 4.2.4. Data -- 4.2.5. Methodology -- 4.2.6. Global land cover datasets -- 4.3. Conclusion -- 4.4. References -- 5. Image Processing in Spark -- 5.1. Introduction -- 5.2. Prediction map generation -- 5.2.1. Spark -- 5.2.2. Implementation -- 5.2.3. Naive method -- 5.2.4. Advanced method -- 5.3. Conclusion -- 6. Satellite Image Processing using Spark on the HUPI Platform -- 6.1. Introduction -- 6.2. An introduction to GeoTrellis
    average rating: 0.0 (0 votes)
No physical items for this record

Description based upon print version of record.

Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface: Why TORUS? Toward an Open Resource Using Services, or How to Bring Environmental Science Closer to Cloud Computing -- Structure of the book -- Part 1: Earth Science Remote Sensing -- Introduction to Part 1: From Above We Can See Earth Better -- 1. A Brief History of Remote Sensing -- 1.1. History -- 1.2. Fields of application -- 1.3. Orbits, launchers and platforms -- 1.4. The acquired data are digital images -- 1.5. So what is remote sensing? Some definitions -- 1.6. Notes -- 1.7. References -- 2. Physics of RS

2.1. Introduction -- 2.2. Remote sensing -- 2.3. Fundamental properties of electromagnetic waves -- 2.3.1. Wave equation and solution -- 2.3.2. Quantum properties of electromagnetic radiation -- 2.3.3. Polarization, coherence, group and phase velocity, the Doppler effect -- 2.4. Radiation quantities -- 2.4.1. Spectral quantities -- 2.4.2. Luminous quantities -- 2.5. Generation of electromagnetic waves -- 2.6. Detection of electromagnetic waves -- 2.7. Interaction of electromagnetic waves with matter -- 2.7.1. Overview -- 2.7.2. Interaction mechanisms

2.8. Solid surfaces sensing in the visible and near infrared -- 2.8.1. Wave-surface interaction mechanisms -- 2.9. Radiometric and geometric resolutions -- 2.10. References -- 3. Image Quality -- 3.1. Introduction -- 3.2. Image quality -- geometry -- 3.2.1. Whiskbroom concept -- 3.2.2. Pushbroom concept -- 3.2.3. Full frame concept -- 3.2.4. Optical geometric distortions -- 3.2.5. Relief distortions -- 3.2.6. Inverse location model -- 3.2.7. Direct location model -- 3.2.8. Root Mean Square (RMS) validation -- 3.2.9. Resampling methods

3.2.10. Image geometric quality to assume geographical space continuity -- 3.3. Image quality -- radiometry -- 3.3.1. Radiometric model of the instrument -- 3.3.2. Radiometric equalization and calibration -- 3.3.3. Radiometric signal noise reduction (SNR) -- 3.3.4. Radiometric physical value -- 3.3.5. Image quality -- resolution -- 3.4. Conclusion -- 3.5. Notes -- 3.6. References -- 4. Remote Sensing Products -- 4.1. Atmospheric observation -- 4.1.1. Introduction to common atmospheric gases and particles -- 4.1.2. Introduction to meteorological parameters

4.1.3. Atmospheric observation from satellite -- 4.2. Land observation -- 4.2.1. Introduction -- 4.2.2. Land cover/land use classification system -- 4.2.3. Legend -- 4.2.4. Data -- 4.2.5. Methodology -- 4.2.6. Global land cover datasets -- 4.3. Conclusion -- 4.4. References -- 5. Image Processing in Spark -- 5.1. Introduction -- 5.2. Prediction map generation -- 5.2.1. Spark -- 5.2.2. Implementation -- 5.2.3. Naive method -- 5.2.4. Advanced method -- 5.3. Conclusion -- 6. Satellite Image Processing using Spark on the HUPI Platform -- 6.1. Introduction -- 6.2. An introduction to GeoTrellis

6.3. Using GeoTrellis in Hupi-Notebook

Includes bibliographical references and index.

There are no comments for this item.

Log in to your account to post a comment.