Shaping light in nonlinear optical fibers / edited by Sonia Boscolo, Christophe Finot. - 1 online resource.

Includes index.

Shaping Light in Nonlinear Optical Fibers; Contents; List of Contributors; Preface; Structure of the Book; 1 Modulation Instability, Four-Wave Mixing and their Applications; 1.1 Introduction; 1.2 Modulation Instability; 1.2.1 Linear and Nonlinear Theory of MI; 1.2.2 Polarization MI (PMI) in Birefringent Fibers; 1.2.3 Collective MI of Four-Wave-Mixing; 1.2.4 Induced MI Dynamics, Rogue Waves, and Optimal Parametric Amplification; 1.2.5 High-Order Induced MI; 1.2.6 MI Recurrence Break-Up and Noise; 1.3 Four-Wave Mixing Dynamics; 1.3.1 FWM Processes with Two Pumps; 1.3.2 Bragg Scattering FWM 1.3.3 Applications of BS-FWM to Quantum Frequency Conversion1.4 Fiber Cavity MI and FWM; 1.4.1 Dynamics of MI in a Passive Fiber Cavity; 1.4.2 Parametric Resonances and Period Doubling Phenomena; 1.4.3 FWM in a Fiber Cavity for Optical Buffer Applications; References; 2 Phase-Sensitive Amplification and Regeneration; 2.1 Introduction to Phase-Sensitive Amplifiers; 2.2 Operation Principles and Realization of Phase-Sensitive Parametric Devices; 2.3 One-Mode Parametric Processes; 2.4 Two-Mode Parametric Processes; 2.5 Four-Mode Parametric Processes; 2.6 Conclusion; Acknowledgments; References 3 Novel Nonlinear Optical Phenomena in Gas-Filled Hollow-Core Photonic Crystal Fibers3.1 Introduction; 3.2 Nonlinear Pulse Propagation in Guided Kerr Media; 3.3 Ionization Effects in Gas-Filled HC-PCFs; 3.3.1 Short Pulse Evolution; 3.3.2 Long-Pulse Evolution; 3.4 Raman Effects in Gas-Filled HC-PCFs; 3.4.1 Density Matrix Theory; 3.4.2 Strong Probe Evolution; 3.5 Interplay Between Ionization and Raman Effects in Gas-Filled HC-PCFs; 3.6 Conclusion; Acknowledgments; References; 4 Modulation Instability in Periodically Modulated Fibers; 4.1 Introduction 4.2 Basic Theory of Modulation Instability in Periodically Modulated Waveguides4.2.1 Piecewise Constant Dispersion; 4.3 Fabrication of Periodically Modulated Photonic Crystal Fibers; 4.3.1 Fabrication Principles; 4.3.2 Typical Example; 4.4 Experimental Results; 4.4.1 Experimental Setup; 4.4.2 First Observation of Multiple Simultaneous MI Side Bands in Periodically Modulated Fibers; 4.4.3 Impact of the Curvature of the Dispersion; 4.4.4 Other Modulation Formats; 4.5 Conclusion; Acknowledgments; References; 5 Pulse Generation and Shaping Using Fiber Nonlinearities; 5.1 Introduction 5.2 Picosecond Pulse Propagation in Optical Fibers5.3 Pulse Compression and Ultrahigh-Repetition-Rate Pulse Train Generation; 5.3.1 Pulse Compression; 5.3.2 High-Repetition-Rate Sources; 5.4 Generation of Specialized Temporal Waveforms; 5.4.1 Pulse Evolution in the Normal Regime of Dispersion; 5.4.2 Generation of Parabolic Pulses; 5.4.3 Generation of Triangular and Rectangular Pulses; 5.5 Spectral Shaping; 5.5.1 Spectral Compression; 5.5.2 Generation of Frequency-Tunable Pulses; 5.5.3 Supercontinuum Generation; 5.6 Conclusion; Acknowledgments; References

9781119088141 1119088143 9781119088134 1119088135


Nonlinear optics--Materials.
Optical fibers.
Nonlinear waves.
Nonlinear optics--Materials.
Nonlinear waves.
Optical fibers.
TECHNOLOGY & ENGINEERING / Mechanical


Electronic books.

TA1800 / .S46 2017eb

621.382/75