Porous silicon for biomedical applications / edited by H�elder A. Santos. - Second edition. - 1 online resource : illustrations (black and white, and color). - Woodhead Publishing series in biomaterials . - Woodhead Publishing series in biomaterials. .

Introduction H.A. Santos Part I: Fundamentals of porous silicon for biomedical applications 1. Thermal stabilization of porous silicon J. Salonen and E. M�akil�a 2. Thermal properties of nanoporous silicon materials N. Koshida 3. Photochemical and nonthermal chemical modification of porous silicon K.W. Kolasinski 4. Protein-modified porous silicon optical devices for biosensing M. Terracciano, C. Tramontano, R. Moretta, B. Miranda, N. Borbone, L. De Stefano, and I. Rea 5. Biocompatibility of porous silicon I.S. Naiyeju and L.M. Bimbo

Part II: Porous silicon for bioimaging and biosensing applications 6. Optical properties of porous silicon materials V. Torres-Costa and R.J. Mart�in-Palma 7. Radiolabeled porous silicon for nuclear imaging and theranostic applications M. Sarparanta and A.J. Airaksinen 8. Porous silicon for targeting microorganisms: Detection and treatment N. Massad-Ivanir, S. Arshavsky-Graham, and E. Segal 9. Porous silicon biosensors for DNA sensing G.A. Rodriguez, J.L. Lawrie, R. Layouni, and S.M. Weiss 10. Near-infrared imaging for in vivo assessment of porous silicon-based materials B. Xia, J. Li, and Y. Gao 11. Porous silicon-based sensors for protein detection E.E. Antunez, M.A. Martin, and N.H. Voelcker

Part III: Porous silicon for drug delivery, cancer therapy, and tissue engineering applications 12. Nanoporous silicon to enhance oral delivery of poorly water-soluble drugs H.B. Schultz, P. Joyce, C.A. Prestidge, and T.J. Barnes 13. Porous silicon for tumor targeting and imaging J.-H. Park, M. Jeong, and H. Kim 14. Porous silicon-polymer composites for cell culture and tissue engineering S.J.P. McInnes, R.B. Vasani, N.K. McMillan, and N.H. Voelcker 15. Porous silicon and related composites as functional tissue engineering scaffolds N.K. McMillan and J.L. Coffer 16. Porous silicon in photodynamic and photothermal therapy L.A. Osminkina and M.B. Gongalsky 17. Porous silicon microneedles and nanoneedles for biomedical applications C. Chiappini 18. Porous silicon materials for cancer and immunotherapy F. Fontana, Z. Liu, J. Hirvonen, and H.A. Santos

Includes index.

Includes bibliographical references and index.

Intro -- Porous Silicon for Biomedical Applications -- Copyright -- Contents -- Contributors -- Preface -- References -- Introduction -- References -- Part 1: Fundamentals of porous silicon for biomedical applications -- Chapter 1: Thermal stabilization of porous silicon -- 1.1. Introduction -- 1.2. Thermal oxidation -- 1.3. Thermal carbonization -- 1.4. Thermal nitridation -- 1.5. Structural effects of thermal annealing -- 1.6. Analytical aspects -- 1.7. Conclusions and future trends -- References -- Chapter 2: Thermal properties of nanoporous silicon materials -- 2.1. Introduction -- 2.2. Thermal constants of PSi -- 2.2.1. Thermal characterizations of nanostructures -- 2.2.2. Experimental and theoretical analyses -- 2.3. Application studies -- 2.3.1. Survey -- 2.3.2. Thermo-acoustic effect -- 2.3.2.1. Device structure and emission mechanism -- 2.3.2.2. Frequency response -- 2.3.2.3. Pulsed operation -- 2.3.3. Applications of thermos-acoustic device -- 2.3.3.1. Digital speaker -- 2.3.3.2. Object sensing in air -- 2.3.3.3. Noncontact actuator -- 2.3.3.4. Bio-acoustics -- 2.3.3.5. Chemical reactor array -- 2.4. Conclusion and future trends -- Acknowledgments -- References -- Chapter 3: Photochemical and nonthermal chemical modification of porous silicon -- 3.1. Introduction -- 3.2. Hydrosilylation and controlled surface modification of Si -- 3.3. Surface photochemistry: An introduction -- 3.3.1. The nature of electronic levels at interfaces -- 3.3.2. Initiating photochemistry at silicon surfaces -- 3.4. Photochemical mechanisms on H/Si surfaces -- 3.5. Laser ablation -- 3.6. Electrochemical grafting -- 3.7. Sonochemistry -- 3.8. Microwave-induced chemistry -- 3.9. Mechanochemistry -- 3.10. Conclusions and future trends -- References -- Chapter 4: Protein-modified porous silicon optical devices for biosensing -- 4.1. Introduction. 4.2. Proteins on surfaces -- 4.2.1. Proteins and other biomolecules -- 4.2.2. Biofunctionalization of the porous silicon surface -- 4.3. Porous silicon monolayers and multilayers -- 4.3.1. Hybrid graphene oxide-porous silicon-based transducer -- 4.4. Characterization methods -- 4.4.1. Spectroscopic reflectometry (FFT theory) -- 4.4.2. Photoluminescence spectroscopy -- 4.4.3. Water contact angle -- 4.4.4. Scanning electron microscopy -- 4.4.5. Atomic force microscopy -- 4.5. Protein-modified PSi -- 4.5.1. Protein infiltration in PSi -- 4.5.2. Biofunctionalization of PSi and GO-PSi platforms for optical sensing -- 4.6. Conclusions and future trends -- Acknowledgments -- References -- Chapter 5: Biocompatibility of porous silicon -- 5.1. Biocompatibility -- 5.1.1. Definition -- 5.1.2. Porous silicon bioactive properties -- 5.2. Biodegradability -- 5.2.1. Degradation rate for biomedical applications -- 5.2.2. The fate of orthosilicic acid in the human body -- 5.2.3. The link between PSi porosity and biocompatibility/biodegradability -- 5.3. Cytotoxicity -- 5.3.1. Cytotoxicity of PSi -- 5.3.2. The link between PSi particle size and cytocompatibility -- 5.3.2.1. THCPSi particles -- 5.3.2.2. TOPSi particles -- 5.4. The fate of porous silicon in the body -- 5.4.1. Retention and excretion of PSi particles -- 5.4.1.1. Plasma-mimetic fluid -- 5.4.1.2. Gastrointestinal tract -- 5.4.1.3. Tumor-associated cells -- 5.4.2. Metabolism and degradation of PSi particles in different organs -- 5.4.2.1. Eye -- 5.4.2.2. Liver and spleen -- 5.4.2.3. Other organs in systemic circulation -- 5.5. In vivo behavior of PSi implants -- 5.5.1. BrachySil (now OncoSil) -- 5.5.2. PSi/polymer composites -- 5.5.3. PSi membranes -- 5.6. Porous silicon for biomimetic reactors and biohybrid systems -- 5.6.1. Biomimetic reactors -- 5.6.2. Biohybrid systems. 5.6.2.1. TCPSi and THCPSi particles -- 5.6.2.2. TOPSi particles -- 5.7. Porous silicon for the design of targeted nanocarriers -- 5.8. Porous silicon for radiation theranostics -- 5.9. Porous silicon for tissue engineering -- 5.10. Missing links -- 5.10.1. Standardization -- 5.10.2. In vitro studies -- 5.10.3. In vivo studies -- 5.11. Conclusion -- References -- Part 2: Porous silicon for bioimaging and biosensing applications -- Chapter 6: Optical properties of porous silicon materials -- 6.1. Introduction -- 6.2. Morphology of PSi -- 6.3. Effective medium models -- 6.3.1. Maxwell-Garnett (MG) model -- 6.3.2. Bruggeman model -- 6.3.3. Looyenga-Landau-Lifshitz (LLL) model -- 6.3.4. Bergman's representation -- 6.4. Optical constants of nano-PSi -- 6.5. Stability of the optical properties of nano-PSi -- 6.6. Multilayer structures -- 6.7. Optical applications of PSi optical filters -- 6.7.1. Filtered light-emitting devices -- 6.7.2. Filtered photodetectors -- 6.7.3. Chemical sensors -- 6.7.4. Biosensors -- 6.8. Conclusion and future trends -- References -- Chapter 7: Radiolabeled porous silicon for nuclear imaging and theranostic applications -- 7.1. Introduction -- 7.2. Methods for tracing drug delivery -- 7.2.1. Diagnostic methods -- 7.2.2. Theranostics -- 7.2.3. Imaging in drug development -- 7.3. Radiolabeled PSi materials -- 7.3.1. Methods of preparation -- 7.3.2. Evaluation of biodistribution -- 7.3.3. Evaluation of targeted accumulation -- 7.3.3.1. Heart targeted PSi nanoparticles -- 7.3.3.2. Tumor-targeted PSi nanoparticles -- 7.3.4. Carrier for therapeutic radionuclides -- 7.4. Conclusions and future trends -- References -- Chapter 8: Porous silicon for targeting microorganisms: Detection and treatment -- 8.1. Introduction -- 8.2. Advancements in microorganism detection -- 8.2.1. Biosensing of bacteria within ``real samples��. 8.2.2. Sensitivity and signal enhancement -- 8.2.3. Monitoring bacterial behavior -- 8.3. PSi as an antibacterial agent -- 8.4. Conclusions and future trends -- References -- Chapter 9: Porous silicon biosensors for DNA sensing -- 9.1. Introduction -- 9.1.1. DNA sensing background -- 9.1.2. Important metrics for DNA sensing -- 9.1.2.1. Sensitivity and detection limit -- 9.1.2.2. Selectivity -- 9.1.2.3. Sensor response time -- 9.1.2.4. Limitations on sequence length -- 9.1.3. Other existing techniques for DNA detection and sequencing -- 9.2. PSi sensor preparation -- 9.2.1. Functionalization techniques -- 9.2.2. DNA attachment approaches: Direct infiltration of pre-synthesized DNA or in situ DNA synthesis -- 9.3. PSi DNA sensor structures, measurement techniques, and sensitivity -- 9.3.1. Optical transduction -- 9.3.1.1. Reflection spectroscopy -- Single layer interferometers -- Waveguides and other guided wave structures -- Bragg mirrors and microcavities -- Multilayer particles -- 9.3.1.2. Absorption spectroscopy -- 9.3.1.3. Photoluminescence (PL) and fluorescence -- Single-layer -- Microcavity -- 9.3.1.4. Surface enhanced Raman spectroscopy (SERS) -- 9.3.2. Electrical and electrochemical transduction -- 9.4. Corrosion of PSi DNA sensors -- 9.5. Effect of pore size on DNA infiltration and detection -- 9.6. Control of DNA surface density in nanoscale pores -- 9.7. Kinetics for real-time sensing -- 9.8. Conclusions and future trends -- References -- Chapter 10: Near-infrared imaging for in vivo assessment of porous silicon-based materials -- 10.1. Introduction -- 10.2. Fabrication of PSi-based composited materials with NIR PL -- 10.3. Assessment of the fate of PSi-based composited materials using in vivo imaging -- 10.4. Monitoring the physiological microenvironments of pathological tissues in vivo -- 10.5. Conclusions and future perspectives.

9780128225240 0128225246

GBC1D2886 bnb

020291220 Uk


Porous silicon.
Biomedical engineering.
Silicium poreux.
G�enie biom�edical.
biomedical engineering.
Biomedical engineering.
Porous silicon.

TP862

620.193