Scott, Bruce D.,

Turbulence and instabilities in magnetised plasmas. Volume 1, Fluid drift turbulence / Fluid drift turbulence. Bruce Scott. - 1 online resource (various pagings) : illustrations (some color). - [IOP release $release] IOP series in plasma physics IOP ebooks. [2021 collection] . - IOP (Series). Release 21. IOP series in plasma physics. IOP ebooks. 2021 collection. .

"Version: 20210301"--Title page verso.

Includes bibliographical references and index.

1. Overview : magnetised plasma dynamics -- 1.1. Dynamics in plasmas -- 1.2. Magnetised plasmas -- 1.3. Outline of the work 2. Introduction to turbulence -- 2.1. Statistical nonlinearity and cascade dynamics -- 2.2. Eddy mitosis and the cascade model -- 2.3. The statistical nature of turbulence -- 2.4. Quadratic nonlinearity and three-wave coupling -- 2.5. Fluid turbulence--energy and enstrophy -- 2.6. MHD turbulence -- 2.7. Selective decay -- 2.8. How the turbulence becomes two-dimensional -- 2.9. Plan 3. Turbulence in two-dimensional systems -- 3.1. Various model systems -- 3.2. 2D hydrodynamic turbulence -- 3.3. 2D MHD turbulence -- 3.4. 2D electron MHD turbulence -- 3.5. 2D Hall MHD turbulence -- 3.6. Compressibility in MHD 4. Driven/dissipative turbulence -- 4.1. Parallel dynamics along the guide field -- 4.2. The model system for dissipative ExB turbulence -- 4.3. Turbulence in the adiabatic and hydrodynamic limits -- 4.4. Implication of the ion gyroradius 5. Absolute equilibrium ensembles -- 5.1. AEQ and the role of dissipation in turbulence -- 5.2. The conserved quantities and equipartition -- 5.3. The phase space of degrees of freedom -- 5.4. Computational verification -- 5.5. Equipartition among the energies -- 5.6. Reintroduction of dissipation 6. Fluid electrodynamics in a plasma -- 6.1. Introduction -- 6.2. Ideal fluid equations and electrodynamics -- 6.3. High frequency motion under fluid electrodynamics -- 6.4. Quasineutral motion in a neutral plasma -- 6.5. Fluid plasma dynamics under quasineutrality -- 6.6. E Pluribus Unum--the steps to MHD -- 6.7. MHD waves--Alfv�en waves -- 6.8. Energetics of the ideal fluid dynamical systems -- 6.9. Dissipation--corrections to the ideal plasma -- 6.10. Chapman-Enskog procedure--dissipation -- 6.11. The moment approach--diamagnetic fluxes 7. Fluid drift dynamics in a magnetised plasma -- 7.1. Introduction -- 7.2. What the drift approximation is -- 7.3. Perpendicular force balance--diamagnetic current -- 7.4. Parallel dynamics-shear Alfv�en nonlinearity -- 7.5. Perpendicular force balance--fluid drifts -- 7.6. The polarisation drift -- 7.7. Drift ordering and 'delta-f' -- 7.8. Derivation of the fluid drift equations -- 7.9. Energetics of the fluid drift equations -- 7.10. Summary -- 7.11. Delta-f versus total-f energetics -- 7.12. Quasineutrality in Drift Dynamics 8. Parallel dynamics--Alfv�en/sound waves -- 8.1. Introduction -- 8.2. The four-field fluid drift model -- 8.3. Wave-like motion -- 8.4. Energetics, dissipation -- 8.5. Transient responses to a disturbance -- 8.6. Numerical examples -- 8.7. Energetics and decay rates -- 8.8. Thermal transport by the current -- 8.9. Effects of temperature dynamics -- 8.10. Summary 9. Perpendicular dynamics--drift waves -- 9.1. Introduction -- 9.2. ExB advection in a gradient--the drift frequency -- 9.3. Drift waves--the very simplest model -- 9.4. Drift waves--polarisation and dispersion -- 9.5. Drift waves--self-consistent dynamics -- 9.6. Dissipation : phase shifts and energetics -- 9.7. Alfv�enic transients -- 9.8. Numerical examples -- 9.9. Drift Alfv�en waves--the magnetic flutter effect -- 9.10. Reactive instabilities -- 9.11. Mode structure -- 9.12. Summary 10. Mode structure diagnostics -- 10.1. Introduction -- 10.2. Temporal diagnostics -- 10.3. Spectral diagnostics -- 10.4. Energetics -- 10.5. Correlations -- 10.6. Linear growth phase versus turbulence -- 10.7. Randomness -- 10.8. Cross coherence -- 10.9. Interscale transfer -- 10.10. Three-dimensional diagnostics -- 10.11. Summary--mode structure in turbulence 11. Three-dimensional drift wave turbulence -- 11.1. Introduction -- 11.2. Drift Alfv�en model and energetics -- 11.3. Periodic cases -- 11.4. Aspect ratio -- 11.5. Bounded cases -- 11.6. Cases with magnetic shear -- 11.7. On pathology -- 11.8. Summary 12. Drift wave turbulence in a sheared magnetic field -- 12.1. Introduction -- 12.2. Field line connection and magnetic shear -- 12.3. The 2D sheared slab model -- 12.4. Linear stability of electrostatic drift waves -- 12.5. Magnetic shear in 3D--field-aligned coordinates -- 12.6. Self-sustained drift wave turbulence -- 12.7. Magnetic shear and drift wave mode structure -- 12.8. Electromagnetic effects -- 12.9. Contingent role of linear stability -- 12.10. Summary 13. MHD interchange turbulence -- 13.1. Introduction -- 13.2. Magnetic divergences and the interchange model -- 13.3. Interchange energetics -- 13.4. The 2D interchange model -- 13.5. The ideal interchange mode -- 13.6. 2D interchange turbulence -- 13.7. Radial flows versus zonal flows -- 13.8. The mode structure of interchange turbulence -- 13.9. A simple model of a toroidal magnetic field -- 13.10. The ballooning mode -- 13.11. Three dimensions--ballooning mode turbulence -- 13.12. Curvature forcing and ballooning mode structure -- 13.13. Electromagnetic and collisional effects -- 13.14. Summary 14. Toroidal drift Alfv�en turbulence -- 14.1. Introduction -- 14.2. The toroidal drift Alfv�en model -- 14.3. Toroidal drift Alfv�en turbulence -- 14.4. The energetics of toroidal turbulence -- 14.5. The mode structure of toroidal turbulence -- 14.6. From the linear stage to turbulence -- 14.7. Electromagnetic and collisional effects -- 14.8. Warm ion effects -- 14.9. Comparison to the control cases -- 14.10. Summary 15. Turbulence on open field lines -- 15.1. Introduction--open field line geometry -- 15.2. Model characteristics -- 15.3. Effects on the turbulence -- 15.4. Turbulence in a dipole magnetic field -- 15.5. Summary 16. Drift wave turbulence and flows -- 16.1. Introduction--eddies and flows -- 16.2. Kelvin-Helmholtz stability -- 16.3. Sheared flows and decorrelation -- 16.4. ExB flow energetics -- 16.5. Effect of background flow shear -- 16.6. Flow shear in warm-ion toroidal cases -- 16.7. Properties of the flux surface average -- 16.8. Zonal and equilibrium flows -- 16.9. Self-generated zonal flows -- 16.10. Summary -- 17. Interlude.

Ever since the first observations of turbulent fluctuations in laboratory plasma experiments in the years around 1980, turbulence in magnetised plasmas has been a subject of vigorous interest in the field of plasma physics and magnetic confinement. The first of a two-volume set, this book begins with an overview of the essential nature of a plasma and a magnetised plasma, then turbulence and plasma turbulence are introduced conceptually and mathematically. There follows a theoretical interlude developing the concepts of fluid and plasma dynamics. After this, concepts of energetic consistency and nonlinear instability and mode structure are emphasised. The effects of magnetic shear and curvature, and open and closed magnetic field line flux surfaces, and finally the interaction with both background and self-generated flows, are covered. An interlude points to a second volume treating temperature gradients and fluctuations, gyrokinetic and gyrofluid theory, and the interplay with magnetohydrodynamic instabilities. Part of IOP Series in Plasma Physics.

Graduate students and researchers in plasma fusion.




Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.


Bruce Scott is a research plasma physicist having graduated with a Doctorate from the University of Maryland in 1985, and with the German Habilitation from the Heinrich-Heine-Universit�at D�usseldorf in 2001. He is a Fellow of the American Physical Society with membership since 1979. He has several tens of first author papers in peer-reviewed journals in the field of theoretical plasma physics.

9780750325042 9780750325035

10.1088/978-0-7503-2504-2 doi


Plasma turbulence.
Plasma instabilities.
Plasma dynamics.
Plasma physics.
SCIENCE / Physics / Atomic & Molecular.

QC718.5.T8 / S368 2021eb

530.44