Andrews, David L., 1952-

Optical nanomanipulation / David L. Andrews and David S. Bradshaw. - Second edition. - 1 online resource (various pagings) : illustrations (some color). - [IOP release $release] IOP ebooks. [2022 collection] . - IOP (Series). Release 22. IOP ebooks. 2022 collection. .

"Version: 202203"--Title page verso.

Includes bibliographical references and index.

1. Nanomanipulation : why optical methods are best -- 1.1. Non-contact forces -- 1.2. Issues of scale 2. Key properties of the radiation -- 2.1. Energy, linear momentum and angular momentum of light -- 2.2. Light inside a medium -- 2.3. Matter and its interaction with light 3. Optically induced mechanical forces -- 3.1. Overview -- 3.2. Radiation forces -- 3.3. Gradient force 4. Laser deflection, cooling and trapping of atoms -- 4.1. Atomic beam deflection -- 4.2. Doppler cooling -- 4.3. Bose-Einstein condensates 5. Dielectric and metal nanoparticles : Rayleigh regime -- 5.1. Arthur Ashkin and optical tweezers -- 5.2. Optical trapping of nanoparticles -- 5.3. Separation of chiral molecules 6. Larger nanoparticles : Lorenz-Mie regime and beyond -- 6.1. Mie scattering -- 6.2. Thermal effects in optical trapping -- 6.3. Optical levitation -- 6.4. Optical fractionation 7. Biological applications of optical forces -- 7.1. Optical trapping of microbiological particles -- 7.2. Force measurements of individual biomolecules -- 7.3. Cell sorting 8. Optical trapping arrays -- 8.1. Overview -- 8.2. Ultracold atoms : optical lattices and quantum information -- 8.3. Nanoparticles in suspension : techniques for optical lattice production 9. Orbital angular momentum, optical vortices and torques -- 9.1. Orbital angular momentum -- 9.2. Optical vortices -- 9.3. Optical torque 10. Structured light : particle steering and traction -- 10.1. Particle steering -- 10.2. Tractor beams -- 10.3. Surface plasmon optical vortex 11. Optofluidics : lab-on-a-chip mixing and actuating flow -- 11.1. Overview -- 11.2. Optical manipulation in microfluidics 12. Optical binding -- 12.1. The nature of optical binding -- 12.2. The dispersion force : a comparison -- 12.3. Theory of optical binding -- 12.4. Potential energy landscapes -- 13. Past, present and future.

The extended and updated second edition of this book expands its broad survey of the wide-ranging field of optical nanomanipulation. It aims to establish and differentiate the physical principles of this phenomenon, while providing a snapshot portrait of many of the most prominent and up-to-date applications.

Students and undergraduate-level lecturers.




Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.


David L. Andrews is Professor of Chemical Physics at the University of East Anglia (UEA) in Norwich, UK. His internationally renowned research group is known for developing the quantum theory of optical interactions, photonics, nonlinear optics and chiral interactions. David S. Bradshaw is an accomplished science writer and an Honorary Researcher at the University of East Anglia (UEA) in Norwich, UK.

9780750341912 9780750341905

10.1088/978-0-7503-4191-2 doi


Nanostructured materials--Optical properties.
Nanostructured materials--Effect of lasers on.
Optical physics.
Optics and photonics.

TA418.9.N35 / A546 2022eb

620.5