Direct methods for stability analysis of electric power systems : (Record no. 59773)

000 -LEADER
fixed length control field 11522nam a2201093 i 4500
001 - CONTROL NUMBER
control field 5732791
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200421114236.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151221s2010 nju ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470484401
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470872130
-- oBook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- eBook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- hardback
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- oBook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- eBook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- hardback
082 00 - CLASSIFICATION NUMBER
Call Number 621.319
100 1# - AUTHOR NAME
Author Chiang, H.,
245 10 - TITLE STATEMENT
Title Direct methods for stability analysis of electric power systems :
Sub Title theoretical foundation, BCU methodologies, and applications /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xiv, 494 pages).
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Acknowledgments -- 1. Introduction and Overview -- 1.1 Introduction -- 1.2 Trends of Operating Environment -- 1.3 Online TSA -- 1.4 Need for New Tools -- 1.5 Direct Methods: Limitations and Challenges -- 1.6 Purposes of This Book -- 2. System Modeling and Stability Problems -- 2.1 Introduction -- 2.2 Power System Stability Problem -- 2.3 Model Structures and Parameters -- 2.4 Measurement-Based Modeling -- 2.5 Power System Stability Problems -- 2.6 Approaches for Stability Analysis -- 2.7 Concluding Remarks -- 3. Lyapunov Stability and Stability Regions of Nonlinear Dynamical Systems -- 3.1 Introduction -- 3.2 Equilibrium Points and Lyapunov Stability -- 3.3 Lyapunov Function Theory -- 3.4 Stable and Unstable Manifolds -- 3.5 Stability Regions -- 3.6 Local Characterizations of Stability Boundary -- 3.7 Global Characterization of Stability Boundary -- 3.8 Algorithm to Determine the Stability Boundary -- 3.9 Conclusion -- 4. Quasi-Stability Regions: Analysis and Characterization -- 4.1 Introduction -- 4.2 Quasi-Stability Region -- 4.3 Characterization of Quasi-Stability Regions -- 4.4 Conclusions -- 5. Energy Function Theory and Direct Methods -- 5.1 Introduction -- 5.2 Energy Functions -- 5.3 Energy Function Theory -- 5.4 Estimating Stability Region Using Energy Functions -- 5.5 Optimal Schemes for Estimating Stability Regions -- 5.6 Quasi-Stability Region and Energy Function -- 5.7 Conclusion -- 6. Constructing Analytical Energy Functions for Transient Stability Models -- 6.1 Introduction -- 6.2 Energy Functions for Lossless Network-Reduction Models -- 6.3 Energy Functions for Lossless Structure-Preserving Models -- 6.4 Nonexistence of Energy Functions for Lossy Models -- 6.5 Existence of Local Energy Functions -- 6.6 Concluding Remarks -- 7. Construction of Numerical Energy Functions for Lossy Transient Stability Models -- 7.1 Introduction -- 7.2 A Two-Step Procedure -- 7.3 First Integral-Based Procedure -- 7.4 Ill-Conditioned Numerical Problems -- 7.5 Numerical Evaluations of Approximation Schemes.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 7.6 Multistep Trapezoidal Scheme -- 7.7 On the Corrected Numerical Energy Functions -- 7.8 Concluding Remarks -- 8. Direct Methods for Stability Analysis: An Introduction -- 8.1 Introduction -- 8.2 A Simple System -- 8.3 Closest UEP Method -- 8.4 Controlling UEP Method -- 8.5 PEBS Method -- 8.6 Concluding Remarks -- 9. Foundation of the Closest UEP Method -- 9.1 Introduction -- 9.2 A Structure-Preserving Model -- 9.3 Closest UEP -- 9.4 Characterization of the Closest UEP -- 9.5 Closest UEP Method -- 9.6 Improved Closest UEP Method -- 9.7 Robustness of the Closest UEP -- 9.8 Numerical Studies -- 9.9 Conclusions -- 10. Foundations of the Potential Energy Boundary Surface Method -- 10.1 Introduction -- 10.2 Procedure of the PEBS Method -- 10.3 Original Model and Artifi cial Model -- 10.4 Generalized Gradient Systems -- 10.5 A Class of Second-Order Dynamical Systems -- 10.6 Relation between the Original Model and the Artifi cial Model -- 10.7 Analysis of the PEBS Method -- 10.8 Concluding Remarks -- 11. Controlling UEP Method: Theory -- 11.1 Introduction -- 11.2 The Controlling UEP -- 11.3 Existence and Uniqueness -- 11.4 The Controlling UEP Method -- 11.5 Analysis of the Controlling UEP Method -- 11.6 Numerical Examples -- 11.7 Dynamic and Geometric Characterizations -- 11.8 Concluding Remarks -- 12. Controlling UEP Method: Computations -- 12.1 Introduction -- 12.2 Computational Challenges -- 12.3 Constrained Nonlinear Equations for Equilibrium Points -- 12.4 Numerical Techniques for Computing Equilibrium Points -- 12.5 Convergence Regions of Equilibrium Points -- 12.6 Conceptual Methods for Computing the Controlling UEP -- 12.7 Numerical Studies -- 12.8 Concluding Remarks -- 13. Foundations of Controlling UEP Methods for Network-Preserving Transient Stability Models -- 13.1 Introduction -- 13.2 System Models -- 13.3 Stability Regions -- 13.4 Singular Perturbation Approach -- 13.5 Energy Functions for Network-Preserving Models -- 13.6 Controlling UEP for DAE Systems.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 13.7 Controlling UEP Method for DAE Systems -- 13.8 Numerical Studies -- 13.9 Concluding Remarks -- 14. Network-Reduction BCU Method and Its Theoretical Foundation -- 14.1 Introduction -- 14.2 Reduced-State System -- 14.3 Analytical Results -- 14.4 Static and Dynamic Relationships -- 14.5 Dynamic Property (D3) -- 14.6 A Conceptual Network-Reduction BCU Method -- 14.7 Concluding Remarks -- 15. Numerical Network-Reduction BCU Method -- 15.1 Introduction -- 15.2 Computing Exit Points -- 15.3 Stability-Boundary-Following Procedure -- 15.4 A Safeguard Scheme -- 15.5 Illustrative Examples -- 15.6 Numerical Illustrations -- 15.7 IEEE Test System -- 15.8 Concluding Remarks -- 16. Network-Preserving BCU Method and Its Theoretical Foundation -- 16.1 Introduction -- 16.2 Reduced-State Model -- 16.3 Static and Dynamic Properties -- 16.4 Analytical Results -- 16.5 Overall Static and Dynamic Relationships -- 16.6 Dynamic Property (D3) -- 16.7 Conceptual Network-Preserving BCU Method -- 16.8 Concluding Remarks -- 17. Numerical Network-Preserving BCU Method -- 17.1 Introduction -- 17.2 Computational Considerations -- 17.3 Numerical Scheme to Detect Exit Points -- 17.4 Computing the MGP -- 17.5 Computation of Equilibrium Points -- 17.6 Numerical Examples -- 17.7 Large Test Systems -- 17.8 Concluding Remarks -- 18. Numerical Studies of BCU Methods from Stability Boundary Perspectives -- 18.1 Introduction -- 18.2 Stability Boundary of Network-Reduction Models -- 18.3 Network-Preserving Model -- 18.4 One Dynamic Property of the Controlling UEP -- 18.5 Concluding Remarks -- 19. Study of the Transversality Conditions of the BCU Method -- 19.1 Introduction -- 19.2 A Parametric Study -- 19.3 Analytical Investigation of the Boundary Property -- 19.4 The Two-Machine Infi nite Bus (TMIB) System -- 19.5 Numerical Studies -- 19.6 Concluding Remarks -- 20. The BCU-Exit Point Method -- 20.1 Introduction -- 20.2 Boundary Property -- 20.3 Computation of the BCU-Exit Point -- 20.4 BCU-Exit Point and Critical Energy.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 20.5 BCU-Exit Point Method -- 20.6 Concluding Remarks -- 21. Group Properties of Contingencies in Power Systems -- 21.1 Introduction -- 21.2 Groups of Coherent Contingencies -- 21.3 Identifi cation of a Group of Coherent Contingencies -- 21.4 Static Group Properties -- 21.5 Dynamic Group Properties -- 21.6 Concluding Remarks -- 22. Group-Based BCU-Exit Method -- 22.1 Introduction -- 22.2 Group-Based Verifi cation Scheme -- 22.3 Linear and Nonlinear Relationships -- 22.4 Group-Based BCU-Exit Point Method -- 22.5 Numerical Studies -- 22.6 Concluding Remarks -- 23. Group-Based BCU-CUEP Methods -- 23.1 Introduction -- 23.2 Exact Method for Computing the Controlling UEP -- 23.3 Group-Based BCU-CUEP Method -- 23.4 Numerical Studies -- 23.5 Concluding Remarks -- 24. Group-Based BCU Method -- 24.1 Introduction -- 24.2 Group-Based BCU Method for Accurate Critical Energy -- 24.3 Group-Based BCU Method for CUEPs -- 24.4 Numerical Studies -- 24.5 Concluding Remarks -- 25. Perspectives and Future Directions -- 25.1 Current Developments -- 25.2 Online Dynamic Contingency Screening -- 25.3 Further Improvements -- 25.4 Phasor Measurement Unit (PMU)-Assisted Online ATC Determination -- 25.5 Emerging Applications -- 25.6 Concluding Remarks -- Appendix -- A1.1 Mathematical Preliminaries -- A1.2 Proofs of Theorems in Chapter 9 -- A1.3 Proofs of Theorems in Chapter 10 -- Bibliography -- Index.
520 ## - SUMMARY, ETC.
Summary, etc "This book describes the BCU method (Boundary of Stability Region Based Controlling Unstable Equilibrium Point method)"--
520 ## - SUMMARY, ETC.
Summary, etc "Widely accepted around the world, the BCU method is the only direct method used in the power industry. Direct Methods for Stability Analysis of Electric Power Systems presents a comprehensive theoretical foundation of the method and its numerical implementation. This book provides graduate students, researchers, and practitioners with theoretical foundations of direct methods, energy functions, and the BCU method as well as the group-based BCU method and its applications. Numerical studies on industrial models and data are also included"--
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
General subdivision Mathematical models.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732791
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- Wiley,
-- c2011.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2010]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
520 ## - SUMMARY, ETC.
-- Provided by publisher.
520 ## - SUMMARY, ETC.
-- Provided by publisher.
588 ## -
-- Description based on PDF viewed 12/21/2015.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Boundary element methods.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Electric power systems
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Electric power system stability.
695 ## -
-- Analytical models
695 ## -
-- Approximation methods
695 ## -
-- Asymptotic stability
695 ## -
-- Bibliographies
695 ## -
-- Circuit faults
695 ## -
-- Computational modeling
695 ## -
-- Convergence
695 ## -
-- Damping
695 ## -
-- Ear
695 ## -
-- Equations
695 ## -
-- Euclidean distance
695 ## -
-- Generators
695 ## -
-- Indexes
695 ## -
-- Interpolation
695 ## -
-- Load modeling
695 ## -
-- Lyapunov methods
695 ## -
-- Manifolds
695 ## -
-- Mathematical model
695 ## -
-- Newton method
695 ## -
-- Nonlinear dynamical systems
695 ## -
-- Numerical models
695 ## -
-- Numerical stability
695 ## -
-- Parametric study
695 ## -
-- Potential energy
695 ## -
-- Power system dynamics
695 ## -
-- Power system reliability
695 ## -
-- Power system stability
695 ## -
-- Power system transients
695 ## -
-- Power systems
695 ## -
-- Reactive power
695 ## -
-- Regions
695 ## -
-- Rotors
695 ## -
-- Security
695 ## -
-- Set theory
695 ## -
-- Stability analysis
695 ## -
-- Stability criteria
695 ## -
-- Topology
695 ## -
-- Trajectory
695 ## -
-- Transient analysis
695 ## -
-- Video recording
695 ## -
-- Xenon

No items available.