Electromagnetic fields / (Record no. 73738)

000 -LEADER
fixed length control field 13511nam a2201705 i 4500
001 - CONTROL NUMBER
control field 5236513
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205603.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 071115t20152007njua ob 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470124581
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- paper
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- paper
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 530.141
100 1# - AUTHOR NAME
Author Bladel, J. van
245 10 - TITLE STATEMENT
Title Electromagnetic fields /
250 ## - EDITION STATEMENT
Edition statement 2nd ed.
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xiv, 1155 pages) :
490 1# - SERIES STATEMENT
Series statement IEEE press series on electromagnetic wave theory ;
500 ## - GENERAL NOTE
Remark 1 Previous ed.: 1991.
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- 1. Linear Analysis -- 1.1 Linear Spaces -- 1.2 Linear Transformations -- 1.3 The Inversion Problem -- 1.4 Green's Functions -- 1.5 Reciprocity -- 1.6 Green's Dyadics -- 1.7 Convergence of a Series -- 1.8 Eigenfunctions -- 1.9 Integral Operators -- 1.10 Eigenfunction Expansions -- 1.11 Discretization -- 1.12 Matrices -- 1.13 Solution of Matrix Equations: Stability -- 1.14 Finite Differences -- 1.15 Perturbations -- 2. Variational Techniques -- 2.1 Stationary functionals -- 2.2 A Suitable Functional for the String Problem -- 2.3 Functionals for the General L Transformation -- 2.4 Euler's Equations of Some Important Functionals -- 2.5 Discretization of the Trial Functions -- 2.6 Simple Finite Elements for Planar Problems -- 2.7 More Finite Elements -- 2.8 Direct Numerical Solution of Matrix Problems -- 2.9 Iterative Numerical Solution of Matrix Problems -- 3. Electrostatic Fields in the Presence of Dielectrics -- 3.1 Volume Charges in Vacuum -- 3.2 Green's Function for Infinite Space -- 3.3 Multipole Expansion -- 3.4 Potential Generated by a Single Layer of Charge -- 3.5 Potential Generated by a Double Layer of Charge -- 3.6 Potential Generated by a Linear Charge -- 3.7 Spherical Harmonics -- 3.8 Dielectric Materials -- 3.9 Cavity Fields -- 3.10 Dielectric Sphere in an External Field -- 3.11 Dielectric Spheroid in an Incident Field -- 3.12 Numerical Methods -- 4. Electrostatic Fields in the Presence of Conductors -- 4.1 Conductivity -- 4.2 Potential Outside a Charged Conductor -- 4.3 Capacitance Matrix -- 4.4 The Dirichlet Problem -- 4.5 The Neumann Problem -- 4.6 Numerical Solution of the Charge Density Problem -- 4.7 Conductor in an External Field -- 4.8 Conductors in the Presence of Dielectrics -- 4.9 Current Injection into a Conducting Volume -- 4.10 Contact Electrodes -- 4.11 Chains of Conductors -- 5. Special Geometries for the Electrostatic Field -- 5.1 Two-Dimensional Potentials in the Plane -- 5.2 Field Behavior at a ConductingWedge.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5.3 Field Behavior at a DielectricWedge -- 5.4 Separation of Variables in Two Dimensions -- 5.5 Two-Dimensional Integral Equations -- 5.6 Finite Methods in Two Dimensions -- 5.7 Infinite Computational Domains -- 5.8 More Two-Dimensional Techniques -- 5.9 Layered Media -- 5.10 Apertures -- 5.11 Axisymmetric Geometries -- 5.12 Conical Boundaries -- 6. Magnetostatic Fields -- 6.1 Magnetic Fields in Free Space: Vector Potential -- 6.2 Fields Generated by Linear Currents -- 6.3 Fields Generated by Surface Currents -- 6.4 Fields at Large Distances from the Sources -- 6.5 Scalar Potential in Vacuum -- 6.6 Magnetic Materials -- 6.7 Permanent Magnets -- 6.8 The Limit of Infinite Permeability -- 6.9 Two-Dimensional Fields in the Plane -- 6.10 Axisymmetric Geometries -- 6.11 Numerical Methods: Integral Equations -- 6.12 Numerical Methods: Finite Elements -- 6.13 Nonlinear Materials -- 6.14 Strong Magnetic Fields and Force-Free Currents -- 7. Radiation in Free Space -- 7.1 Maxwell's Equations -- 7.2 TheWave Equation -- 7.3 Potentials -- 7.4 Sinusoidal Time Dependence: Polarization -- 7.5 Partially Polarized Fields -- 7.6 The Radiation Condition -- 7.7 Time-Harmonic Potentials -- 7.8 Radiation Patterns -- 7.9 Green's Dyadics -- 7.10 Multipole Expansion -- 7.11 Spherical Harmonics -- 7.12 Equivalent Sources -- 7.13 LinearWire Antennas -- 7.14 CurvedWire Antennas: Radiation -- 7.15 Transient Sources -- 8. Radiation in a Material Medium -- 8.1 Constitutive Equations -- 8.2 PlaneWaves -- 8.3 Ray Methods -- 8.4 Beamlike Propagation -- 8.5 Green's Dyadics -- 8.6 Reciprocity -- 8.7 Equivalent Circuit of an Antenna -- 8.8 Effective Antenna Area -- 9. Plane Boundaries -- 9.1 PlaneWave Incident on a Plane Boundary -- 9.2 Propagation Through a Layered Medium -- 9.3 The Sommerfeld Dipole Problem -- 9.4 Multilayered Structures -- 9.5 Periodic Structures -- 9.6 Field Penetration Through Apertures -- 9.7 Edge Diffraction -- 10. Resonators.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 10.1 Eigenvectors for an Enclosed Volume -- 10.2 Excitation of a Cavity -- 10.3 Determination of the Eigenvectors -- 10.4 Resonances -- 10.5 Open Resonators: Dielectric Resonances -- 10.6 Aperture Coupling -- 10.7 Green's Dyadics -- 11. Scattering: Generalities -- 11.1 The Scattering Matrix -- 11.2 Cross Sections -- 11.3 Scattering by a Sphere -- 11.4 Resonant Scattering -- 11.5 The Singularity Expansion Method -- 11.6 Impedance Boundary Conditions -- 11.7 Thin Layers -- 11.8 Characteristic Modes -- 12. Scattering: Numerical Methods -- 12.1 The Electric Field Integral Equation -- 12.2 The Magnetic Field Integral Equation -- 12.3 The T-Matrix -- 12.4 Numerical Procedures -- 12.5 Integral Equations for Penetrable Bodies -- 12.6 Absorbing Boundary Conditions -- 12.7 Finite Elements -- 12.8 Finite Differences in the Time Domain -- 13. High- and Low-Frequency Fields -- 13.1 Physical Optics -- 13.2 Geometrical Optics -- 13.3 Geometric Theory of Diffraction -- 13.4 Edge Currents and Equivalent Currents -- 13.5 Hybrid Methods -- 13.6 Low-Frequency Fields: The Rayleigh Region -- 13.7 Non-Conducting Scatterers at Low Frequencies -- 13.8 Perfectly Conducting Scatterers at Low Frequencies -- 13.9 Good Conductors -- 13.10 Stevenson's Method Applied to Good Conductors -- 13.11 Circuit Parameters -- 13.12 Transient Eddy Currents -- 14. Two-Dimensional Problems -- 14.1 E and H Waves -- 14.2 Scattering by Perfectly Conducting Cylinders -- 14.3 Scattering by Penetrable Circular Cylinders -- 14.4 Scattering by Elliptic Cylinders -- 14.5 Scattering byWedges -- 14.6 Integral Equations for Perfectly Conducting Cylinders -- 14.7 Scattering by Penetrable Cylinders -- 14.8 Low-Frequency Scattering by Cylinders -- 14.9 Slots in a Planar Screen -- 14.10 More Slot Couplings -- 14.11 Termination of a Truncated Domain -- 14.12 Line Methods -- 15. CylindricalWaveguides -- 15.1 Field Expansions in a ClosedWaveguide -- 15.2 Determination of the Eigenvectors.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 15.3 Propagation in a Closed Waveguide -- 15.4 Waveguide Losses -- 15.5 Waveguide Networks -- 15.6 Aperture Excitation and Coupling -- 15.7 GuidedWaves in General Media -- 15.8 Orthogonality and Normalization -- 15.9 DielectricWaveguides -- 15.10 Other Examples ofWaveguides -- 16. Axisymmetric and Conical Boundaries -- 16.1 Field Expansions for Axisymmetric Geometries -- 16.2 Scattering by Bodies of Revolution: Integral Equations -- 16.3 Scattering by Bodies of Revolution: Finite Methods -- 16.4 Apertures in Axisymmetric Surfaces -- 16.5 The ConicalWaveguide -- 16.6 Singularities at the Tip of a Cone -- 16.7 Radiation and Scattering from Cones -- 17. Electrodynamics of Moving Bodies -- 17.1 Fields Generated by a Moving Charge -- 17.2 The Lorentz Transformation -- 17.3 Transformation of Fields and Currents -- 17.4 Radiation from Sources: the Doppler Effect -- 17.5 Constitutive Equations and Boundary Conditions -- 17.6 Material Bodies Moving Uniformly in Static Fields -- 17.7 Magnetic Levitation -- 17.8 Scatterers in Uniform Motion -- 17.9 Material Bodies in Nonuniform Motion -- 17.10 Rotating Bodies of Revolution -- 17.11 Motional Eddy Currents -- 17.12 Accelerated Frames of Reference -- 17.13 Rotating Comoving Frames -- Appendix 1. Vector Analysis in Three Dimensions -- Appendix 2. Vector Operators in Several Coordinate Systems -- Appendix 3. Vector Analysis on a Surface -- Appendix 4. Dyadic Analysis -- Appendix 5. Special Functions -- Appendix 6. Complex Integration -- Appendix 7. Transforms -- Appendix 8. Distributions -- Appendix 9. Some Eigenfunctions and Eigenvectors -- Appendix 10. Miscellaneous Data -- Bibliography -- General Texts on Electromagnetic Theory -- Texts that Discuss Particular Areas of Electromagnetic Theory -- General Mathematical Background -- Mathematical Techniques Specifically Applied to Electromagnetic Theory -- Acronyms and Symbols -- Author Index -- Subject Index.
520 ## - SUMMARY, ETC.
Summary, etc Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Electromagnetic fields.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236513
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- Wiley-Interscience,
-- c2007.
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/19/2015.
695 ## -
-- Acceleration
695 ## -
-- Aerospace electronics
695 ## -
-- Apertures
695 ## -
-- Approximation methods
695 ## -
-- Artificial neural networks
695 ## -
-- Azimuth
695 ## -
-- Bibliographies
695 ## -
-- Books
695 ## -
-- Boundary conditions
695 ## -
-- Cavity resonators
695 ## -
-- Clocks
695 ## -
-- Coaxial cables
695 ## -
-- Coils
695 ## -
-- Conductivity
695 ## -
-- Conductors
695 ## -
-- Convergence
695 ## -
-- Convolution
695 ## -
-- Couplings
695 ## -
-- Current
695 ## -
-- Current density
695 ## -
-- Dielectrics
695 ## -
-- Differential equations
695 ## -
-- Diffraction
695 ## -
-- Eigenvalues and eigenfunctions
695 ## -
-- Electric fields
695 ## -
-- Electric potential
695 ## -
-- Electrodynamics
695 ## -
-- Electromagnetic fields
695 ## -
-- Electromagnetic waveguides
695 ## -
-- Electromagnetics
695 ## -
-- Electrostatics
695 ## -
-- Equations
695 ## -
-- Erbium
695 ## -
-- Frequency measurement
695 ## -
-- Frequency modulation
695 ## -
-- Fresnel reflection
695 ## -
-- Geometry
695 ## -
-- Green products
695 ## -
-- Green's function methods
695 ## -
-- IEEE Potentials
695 ## -
-- Indexes
695 ## -
-- Integral equations
695 ## -
-- Jacobian matrices
695 ## -
-- Kernel
695 ## -
-- Laplace equations
695 ## -
-- Lighting
695 ## -
-- Lightning
695 ## -
-- Linear approximation
695 ## -
-- Magnetic domains
695 ## -
-- Magnetic resonance
695 ## -
-- Magnetic resonance imaging
695 ## -
-- Magnetic tunneling
695 ## -
-- Magnetostatics
695 ## -
-- Mathematical model
695 ## -
-- Maxwell equations
695 ## -
-- Measurement
695 ## -
-- Media
695 ## -
-- Metals
695 ## -
-- Nonhomogeneous media
695 ## -
-- Optical surface waves
695 ## -
-- Optical transmitters
695 ## -
-- Optical waveguides
695 ## -
-- Permittivity
695 ## -
-- Perpendicular magnetic anisotropy
695 ## -
-- Phase measurement
695 ## -
-- Physical optics
695 ## -
-- Piecewise linear approximation
695 ## -
-- Poles and zeros
695 ## -
-- Polynomials
695 ## -
-- Power transmission lines
695 ## -
-- Propagation
695 ## -
-- Quantum mechanics
695 ## -
-- Radar antennas
695 ## -
-- Receiving antennas
695 ## -
-- Resonant frequency
695 ## -
-- Scattering
695 ## -
-- Search problems
695 ## -
-- Shape
695 ## -
-- Strips
695 ## -
-- Surface impedance
695 ## -
-- Surface waves
695 ## -
-- Symmetric matrices
695 ## -
-- Synchronization
695 ## -
-- Taylor series
695 ## -
-- Tensile stress
695 ## -
-- Terminology
695 ## -
-- Time measurement
695 ## -
-- Trajectory
695 ## -
-- Transforms
695 ## -
-- Transient analysis
695 ## -
-- Ultrafast electronics
695 ## -
-- Vectors
695 ## -
-- Wire
695 ## -
-- Writing

No items available.