Foundations for microwave engineering / (Record no. 73928)

000 -LEADER
fixed length control field 14118nam a2201477 i 4500
001 - CONTROL NUMBER
control field 5265446
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205658.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 100317t20152001nyua ob 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470544662
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic book
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 621.381/3
100 1# - AUTHOR NAME
Author Collin, Robert E.,
245 10 - TITLE STATEMENT
Title Foundations for microwave engineering /
250 ## - EDITION STATEMENT
Edition statement 2nd ed.
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xix, 924 pages) :
490 1# - SERIES STATEMENT
Series statement IEEE Press series on electromagnetic wave theory ;
500 ## - GENERAL NOTE
Remark 1 Originally published: New York : McGraw Hill, c1992.
500 ## - GENERAL NOTE
Remark 1 "An IEEE Press classic reissue."
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- 1 Introduction -- 1.1 Microwave Frequencies -- 1.2 Microwave Applications -- 1.3 Microwave Circuit Elements and Analysis -- 2 Electromagnetic Theory -- 2.1 Maxwell's Equations -- 2.2 Constitutive Relations -- 2.3 Static Fields -- 2.4 Wave Equation -- 2.5 Energy and Power -- 2.6 Boundary Conditions -- 2.7 Plane Waves -- 2.8 Reflection from a Dielectric Interface -- 2.9 Reflection from a Conducting Plane -- 2.10 Potential Theory -- 2.11 Derivation of Solution for Vector Potential -- 2.12 Lorentz Reciprocity Theorem -- 3 Transmission Lines and Waveguides -- Part 1 Waves on Transmission Lines -- 3.1 Waves on An Ideal Transmission Line -- 3.2 Terminated Transmission Line: Resistive Load -- 3.3 Capacitive Termination -- 3.4 Steady-State Sinusoidal Waves -- 3.5 Waves on a Lossy Transmission Line -- 3.6 Terminated Transmission Line: Sinusoidal Waves -- Part 2 Field Analysis of Transmission Lines -- 3.7 Classification of Wave Solutions -- 3.8 Transmission Lines (Field Analysis) -- 3.9 Transmission-Line Parameters -- 3.10 Inhomogeneously Filled Parallel-Plate Transmission Line -- 3.11 Planar Transmission Lines -- 3.12 Microstrip Transmission Line -- 3.13 Coupled Microstrip Lines -- 3.14 Strip Transmission Lines -- 3.15 Coupled Strip Lines -- 3.16 Coplanar Transmission Lines -- Part 3 Rectangular and Circular Waveguides -- 3.17 Rectangular Waveguide -- 3.18 Circular Waveguides -- 3.19 Wave Velocities -- 3.20 Ridge Waveguide -- 3.21 Fin Line -- 4 Circuit Theory for Waveguiding Systems -- 4.1 Equivalent Voltages and Currents -- 4.2 Impedance Description of Waveguide Elements and Circuits -- 4.3 Foster's Reactance Theorem -- 4.4 Even and Odd Properties of Zin -- 4.5 iV-Port Circuits -- 4.6 Two-Port Junctions -- 4.7 Scattering-Matrix Formulation -- 4.8 Scattering Matrix for a Two-Port Junction -- 4.9 Transmission-Matrix Representation -- 4.10 Signal Flow Graphs -- 4.11 Generalized Scattering Matrix for Power Waves -- 4.12 Excitation of Waveguides -- 4.13 Waveguide Coupling by Apertures.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5 Impedance Transformation and Matching -- 5.1 Smith Chart -- 5.2 Impedance Matching with Reactive Elements -- 5.3 Double-Stub Matching Network -- 5.4 Triple-Stub Tuner -- 5.5 Impedance Matching with Lumped Elements -- 5.6 Design of Complex Impedance Terminations -- 5.7 Invariant Property of Impedance Mismatch Factor -- 5.8 Waveguide Reactive Elements -- 5.9 Quarter-Wave Transformers -- 5.10 Theory of Small Reflections -- 5.11 Approximate Theory for Multisection Quarter-Wave Transformers -- 5.12 Binomial Transformer -- 5.13 Chebyshev Transformer -- 5.14 Chebyshev Transformer (Exact Results) -- 5.15 Filter Design Based on Quarter-Wave-Transformer Prototype Circuit -- 5.16 Tapered Transmission Lines -- 5.17 Synthesis of Transmission-Line Tapers -- 5.18 Chebyshev Taper -- 5.19 Exact Equation for the Reflection Coefficient -- 6 Passive Microwave Devices -- 6.1 Terminations -- 6.2 Attenuators -- 6.3 Phase Shifters -- 6.4 Directional Couplers -- 6.5 Hybrid Junctions -- 6.6 Power Dividers -- 6.7 Microwave Propagation in Ferrites -- 6.8 Faraday Rotation -- 6.9 Microwave Devices Employing Faraday Rotation -- 6.10 Circulators -- 6.11 Other Ferrite Devices -- 7 Electromagnetic Resonators -- 7.1 Resonant Circuits -- 7.2 Transmission-Line Resonant Circuits -- 7.3 Microstrip Resonators -- 7.4 Microwave Cavities -- 7.5 Dielectric Resonators -- 7.6 Equivalent Circuits for Cavities -- 7.7 Field Expansion in a General Cavity -- 7.8 Oscillations in a Source-Free Cavity -- 7.9 Excitation of Cavities -- 7.10 Cavity Perturbation Theory -- 8 Periodic Structures and Filters -- 8.1 Capacitively Loaded Transmission-Line-Circuit Analysis -- 8.2 Wave Analysis of Periodic Structures -- 8.3 Periodic Structures Composed of Unsymmetrical Two-Port Networks -- 8.4 Terminated Periodic Structures -- 8.5 Matching of Periodic Structures -- 8.6 k0-aL Diagram -- 8.7 Group Velocity and Energy Flow -- 8.8 Floquet's Theorem and Spatial Harmonics -- 8.9 Periodic Structures for Traveling-Wave Tubes.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 8.10 Sheath Helix -- 8.11 Some General Properties of a Helix -- 8.12 Introduction to Microwave Filters -- 8.13 Image-Parameter Method of Filter Design -- 8.14 Filter Design by Insertion-Loss Method -- 8.15 Specification of Power Loss Ratio -- 8.16 Some Low-Pass-Filter Designs -- 8.17 Frequency Transformations -- 8.18 Impedance and Admittance Inverters -- 8.19 A Microstrip Half-Wave Filter -- 8.20 Microstrip Parallel Coupled Filter -- 8.21 Quarter-Wave-Coupled Cavity Filters -- 8.22 Direct-Coupled Cavity Filters -- 8.23 Other Types of Filters -- 9 Microwave Tubes -- 9.1 Introduction -- 9.2 Electron Beams with dc Conditions -- 9.3 Space-Charge Waves on Beams with Confined Flow -- 9.4 Space-Charge Waves on Unfocused Beams -- 9.5 Ac Power Relations -- 9.6 Velocity Modulation -- 9.7 Two-Cavity Klystron -- 9.8 Reflex Klystron -- 9.9 Magnetron -- 9.10 O-Type Traveling-Wave Tube -- 9.11 M-Type Traveling-Wave Tube -- 9.12 Gyrotrons -- 9.13 Other Types of Microwave Tubes -- 10 Solid-State Amplifiers -- 10.1 Bipolar Transistors -- 10.2 Field-Effect Transistors -- 10.3 Circle-Mapping Properties of Bilinear Transformations -- 10.4 Microwave Amplifier Design Using Sij Parameters -- 10.5 Amplifier Power Gain -- 10.6 Amplifier Stability Criteria -- 10.7 Constant Power-Gain Circles -- 10.8 Basic Noise Theory -- 10.9 Low-Noise Amplifier Design -- 10.10 Constant Mismatch Circles -- 10.11 Microwave Amplifier Design -- 10.12 Other Aspects of Microwave Amplifier Design -- 11 Parametric Amplifiers -- 11.1 p-n Junction Diodes -- 11.2 Manley-Rowe Relations -- 11.3 Linearized Equations for Parametric Amplifiers -- 11.4 Parametric Up-Converter -- 11.5 Negative-Resistance Parametric Amplifier -- 11.6 Noise Properties of Parametric Amplifiers -- 12 Oscillators and Mixers -- 12.1 Gunn Oscillators -- 12.2 IMPATT Diodes -- 12.3 Transistor Oscillators -- 12.4 Three-Port Description of a Transistor -- 12.5 Oscillator Circuits -- 12.6 Oscillator Design -- 12.7 Mixers -- 12.8 Mixer Noise Figure -- 12.9 Balanced Mixers.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 12.10 Other Types of Mixers -- 12.11 Mixer Analysis Using Harmonic Balancing -- Appendixes -- I Useful Relations from Vector Analysis -- I.1 Vector Algebra -- I.2 Vector Operations in Common Coordinate Systems -- I.3 Vector Identities -- I.4 Green's Identities -- II Bessel Functions -- II.1 Ordinary Bessel Functions -- II.2 Modified Bessel Functions -- III Conformal Mapping Techniques -- III.1 Conformal Mapping -- III.2 Elliptic Sine Function -- III.3 Capacitance between Two Parallel Strips -- III.4 Strip Transmission Line -- III.5 Conductor Loss -- III.6 Conductor Losses for a Microstrip Transmission Line -- III.7 Attenuation for a Coplanar Line -- IV Physical Constants and Other Data -- IV.1 Physical Constants -- IV.2 Conductivities of Materials -- IV.3 Dielectric Constants of Materials -- IV.4 Skin Depth in Copper -- Index.
520 ## - SUMMARY, ETC.
Summary, etc "FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, covers the major topics of microwave engineering. Its presentation defines the accepted standard for both advanced undergraduate and graduate level courses on microwave engineering. An essential reference book for the practicing microwave engineer, it features:. Planar transmission lines, as well as an appendix that describes in detail conformal mapping methods for their analysis and attenuation characteristics. Small aperture coupling and its application in practical components such as directional couplers and cavity coupling. Printed circuit components with an emphasis on techniques such as even and odd mode analysis and the use of symmetry properties. Microwave linear amplifier and oscillator design using solid-state circuits such as varactor devices and transistors FOUNDATIONS FOR MICROWAVE ENGINEERING, Second Edition, has extensive coverage of transmission lines, waveguides, microwave circuit theory, impedance matching and cavity resonators. It devotes an entire chapter to fundamental microwave tubes, in addition to chapters on periodic structures, microwave filters, small signal solid-state microwave amplifier and oscillator design, and negative resistance devices and circuits. Completely updated in 1992, it is being reissued by the IEEE Press in response to requests from our many members, who found it an invaluable textbook and an enduring reference for practicing microwave engineers. About the Author Robert E. Collin is the author or coauthor of more than 150 technical papers and five books on electromagnetic theory and applications. His classic text, Field Theory of Guided Waves, is also a volume in the series. Professor Collin has had a long and distinguished academic career at Case Western Reserve University. In addition to his professional duties, he has served as chairman of the Department of Electrical Engineering and as interim dean of engineering. Professor Collin is a life fellow of the IEEE and a member of the Microwave Theory and Techniques Society and the Antennas and Propagation Society (APS). He is a member of U.S. Commission B of URSI and a member of the Geophysical Society. Other honors include the Diekman Award from Case Western Reserve University for distinguished graduate teaching , the IEEE APS Distinguished Career Award (1992), the IEEE Schelkunoff Prize Paper Award (1992), the IEEE Electromagnetics Award (1998), and an IEEE Third Millennium Medal in 2000. In 1990 Professor Collin was elected to the National Academy of Engineering." Sponsored by: IEEE Antennas and Propagation Society, IEEE Microwave Theory and Techniques Society An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley Makerting Department.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Microwave devices.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5265446
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- New York :
-- IEEE Press,
-- c2001.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2001]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
695 ## -
-- Acceleration
695 ## -
-- Admittance
695 ## -
-- Algebra
695 ## -
-- Argon
695 ## -
-- Artificial intelligence
695 ## -
-- Attenuators
695 ## -
-- Bipolar transistors
695 ## -
-- Bismuth
695 ## -
-- Capacitance
695 ## -
-- Charge carrier processes
695 ## -
-- Circuit theory
695 ## -
-- Conductivity
695 ## -
-- Conductors
695 ## -
-- Conformal mapping
695 ## -
-- Copper
695 ## -
-- Current density
695 ## -
-- Cyclotrons
695 ## -
-- Differential equations
695 ## -
-- Electric fields
695 ## -
-- Electromagnetic waveguides
695 ## -
-- Electron beams
695 ## -
-- Electron tubes
695 ## -
-- Equations
695 ## -
-- Filtering theory
695 ## -
-- Frequency measurement
695 ## -
-- Frequency modulation
695 ## -
-- Generators
695 ## -
-- Germanium
695 ## -
-- Gold
695 ## -
-- Gunn devices
695 ## -
-- Impedance
695 ## -
-- Indexes
695 ## -
-- Junctions
695 ## -
-- Laplace equations
695 ## -
-- Magnetic field measurement
695 ## -
-- Magnetic fields
695 ## -
-- Magnetic flux
695 ## -
-- Materials
695 ## -
-- Mathematical model
695 ## -
-- Measurement
695 ## -
-- Microwave amplifiers
695 ## -
-- Microwave circuits
695 ## -
-- Microwave communication
695 ## -
-- Microwave filters
695 ## -
-- Microwave integrated circuits
695 ## -
-- Microwave oscillators
695 ## -
-- Microwave ovens
695 ## -
-- Microwave theory and techniques
695 ## -
-- Microwave transistors
695 ## -
-- Mixers
695 ## -
-- Oscillators
695 ## -
-- Periodic structures
695 ## -
-- Power transmission lines
695 ## -
-- Presses
695 ## -
-- Propagation
695 ## -
-- RLC circuits
695 ## -
-- Radar
695 ## -
-- Radio frequency
695 ## -
-- Reflection
695 ## -
-- Resistance
695 ## -
-- Resonant frequency
695 ## -
-- Semiconductor diodes
695 ## -
-- Shunt (electrical)
695 ## -
-- Silver
695 ## -
-- Skin
695 ## -
-- Strips
695 ## -
-- Time frequency analysis
695 ## -
-- Transistors
695 ## -
-- Transmission line matrix methods
695 ## -
-- Transmission lines
695 ## -
-- Waveguide discontinuities
695 ## -
-- Zinc

No items available.