Advanced signal integrity for high-speed digital designs / (Record no. 74027)

000 -LEADER
fixed length control field 10299nam a2201453 i 4500
001 - CONTROL NUMBER
control field 5361024
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205727.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 080623t20152009njua ob 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470423899
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
082 04 - CLASSIFICATION NUMBER
Call Number 621.381
100 1# - AUTHOR NAME
Author Hall, Stephen H.,
245 10 - TITLE STATEMENT
Title Advanced signal integrity for high-speed digital designs /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xvii, 660 pages) :
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Acknowledgments -- Chapter 1: Introduction: The importance of signal integrity -- 1.1 Computing Power: Past and Future -- 1.2 The problem -- 1.3 The Basics -- 1.4 A new realm of bus design -- 1.5 Scope -- 1.6 Summary -- 1.7 References -- Chapter 2: Electromagnetic Fundamentals for Signal Integrity -- 2.1 Introduction -- 2.2 Maxwell's Equations -- 2.3 Common Vector Operators -- 2.4 Wave Propagation -- 2.5 Electrostatics -- 2.6 Magnetostatics -- 2.7 Power Flow and the Poynting Vector -- 2.8 Reflections of Electromagnetic Waves -- 2.9 References -- 2.10 Problems -- Chapter 3: Ideal Transmission Line Fundamentals -- 3.1 Transmission Line Structures -- 3.2 Wave propagation on loss free transmission lines -- 3.3 Transmission line properties -- 3.4 Transmission line parameters for the loss free case -- 3.5 Transmission line reflections -- 3.6 Time domain Reflectometry -- 3.7 References -- 3.8 Problems -- Chapter 4: Crosstalk -- 4.1 Mutual Inductance and Capacitance -- 4.2 Coupled Wave Equations -- 4.3 Coupled Line Analysis -- 4.4 Modal Analysis -- 4.5 Crosstalk Minimization -- 4.6 Summary -- 4.7 References -- 4.8 Problems -- Chapter 5: Non-ideal conductor models for transmission lines -- 5.1 Signals propagating in an unbounded conductive media -- 5.2 Classic conductor model for transmission lines -- 5.3 Surface Roughness -- 5.4 Transmission line parameters with a non-ideal conductor -- 5.5 Problems -- Chapter 6: Electrical properties of dielectrics -- 6.1 Polarization of dielectrics -- 6.2 Classification of dielectric materials -- 6.3 Frequency dependent dielectric behavior -- 6.4 Properties of a physical dielectric model -- 6.5 The fiber-weave effect -- 6.6 Environmental variation in dielectric behavior -- 6.7 Transmission line parameters for lossy dielectrics and realistic conductors -- 6.8 References -- 6.9 Problems -- Chapter 7: Differential signaling -- 7.1 Removal of common mode noise -- 7.2 Differential Crosstalk -- 7.3 Virtual reference plane -- 7.4 Propagation of Modal Voltages.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 7.5 Common terminology -- 7.6 Drawbacks of differential signaling -- 7.7 References -- 7.8 Problems -- Chapter 8: Mathematical Requirements of Physical Channels -- 8.1 Frequency domain effects in time domain simulations -- 8.2 Requirements for a physical Channel -- 8.3 References -- 8.4 Problems -- Chapter 9: Network Analysis for Digital Engineers -- 9.1 High frequency voltage and current waves -- 9.2 Network Theory -- 9.3 Properties of Physical S-parameters -- 9.4 References -- 9.5 Problems -- Chapter 10: Topics in High-Speed Channel Modeling -- 10.1 Creating a physical transmission line mode -- 10.2 Non-Ideal Return Paths -- 10.3 Vias -- 10.4 References -- 10.5 Problems -- Chapter 11: I/O Circuits and Models -- 11.1 Introduction -- 11.2 Push-Pull Transmitters -- 11.3 CMOS Receivers -- 11.4 ESD Protection Circuits -- 11.5 On-Chip Termination -- 11.6 Bergeron Diagrams -- 11.7 Open Drain Transmitters -- 11.8 Differential Current Mode Transmitters -- 11.9 Low Swing/Differential Receivers -- 11.10 IBIS Models -- 11.11 Summary -- 11.12 References -- 11.13 Problems -- Chapter 12: Equalization -- 12.1 Introduction -- 12.2 Continuous Time Linear Equalizers -- 12.3 Discrete Linear Equalizers -- 12.4 Decision Feedback Equalization -- 12.5 Summary -- 12.6 References -- 12.7 Problems -- Chapter 13: Modeling and Budgeting of Timing Jitter and Noise -- 13.1 The Eye Diagram -- 13.2 Bit Error Rate -- 13.3 Jitter Sources and Budgets -- 13.4 Noise Sources and Budgets -- 13.5 Peak Distortion Analysis Methods -- 13.6 Summary -- 13.7 References -- 13.8 Problems -- Chapter 14: System Analysis Using Response Surface Modeling -- 14.1 Introduction -- 14.2 Case Study: 10 Gb/s differential PCB interface -- 14.3 RSM Construction by Least Squares Fitting -- 14.4 Measures of Fit -- 14.5 Significance Testing -- 14.6 Confidence Intervals -- 14.7 Sensitivity Analysis and Design Optimization -- 14.8 Defect Rate Prediction Using Monte Carlo Simulation -- 14.9 Additional RSM Considerations -- 14.10 Summary.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 14.11 References -- 14.12 Problems -- Appendix A: Useful formulae, identities, units and constants -- Appendix B: 4-port Conversions between T and S-parameters -- Appendix C: Critical values of the F-statistic -- Appendix D: Critical values of the t-statistic -- Appendix E: Derivation of the internal inductance using the Hilbert Transform.
520 ## - SUMMARY, ETC.
Summary, etc A synergistic approach to signal integrity for high-speed digital design This book is designed to provide contemporary readers with an understanding of the emerging high-speed signal integrity issues that are creating roadblocks in digital design. Written by the foremost experts on the subject, it leverages concepts and techniques from non-related fields such as applied physics and microwave engineering and applies them to high-speed digital design--creating the optimal combination between theory and practical applications. Following an introduction to the importance of signal integrity, chapter coverage includes: . Electromagnetic fundamentals for signal integrity. Transmission line fundamentals. Crosstalk. Non-ideal conductor models, including surface roughness and frequency-dependent inductance. Frequency-dependent properties of dielectrics. Differential signaling. Mathematical requirements of physical channels. S-parameters for digital engineers. Non-ideal return paths and via resonance. I/O circuits and models. Equalization. Modeling and budgeting of timing jitter and noise. System analysis using response surface modeling Each chapter includes many figures and numerous examples to help readers relate the concepts to everyday design and concludes with problems for readers to test their understanding of the material. Advanced Signal Integrity for High-Speed Digital Designs is suitable as a textbook for graduate-level courses on signal integrity, for programs taught in industry for professional engineers, and as a reference for the high-speed digital designer.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Digital electronics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Logic design.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Signal integrity (Electronics)
700 1# - AUTHOR 2
Author 2 Heck, Howard L.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5361024
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- John Wiley & Sons,
-- 2009.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2009]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
695 ## -
-- Adaptive equalizers
695 ## -
-- Analytical models
695 ## -
-- Bandwidth
695 ## -
-- Bit error rate
695 ## -
-- Capacitance
695 ## -
-- Circuit synthesis
695 ## -
-- Clocks
695 ## -
-- Conductors
695 ## -
-- Crosstalk
695 ## -
-- Current density
695 ## -
-- Data models
695 ## -
-- Decision feedback equalizers
695 ## -
-- Delay effects
695 ## -
-- Dielectric losses
695 ## -
-- Dielectrics
695 ## -
-- Driver circuits
695 ## -
-- Electromagnetic scattering
695 ## -
-- Electromagnetics
695 ## -
-- Equations
695 ## -
-- Extrapolation
695 ## -
-- Fourier transforms
695 ## -
-- Frequency domain analysis
695 ## -
-- History
695 ## -
-- Humans
695 ## -
-- Impedance
695 ## -
-- Indexes
695 ## -
-- Inductance
695 ## -
-- Integrated circuit interconnections
695 ## -
-- Integrated circuit modeling
695 ## -
-- Inverters
695 ## -
-- Jitter
695 ## -
-- Labeling
695 ## -
-- Leg
695 ## -
-- MOS devices
695 ## -
-- Magnetostatics
695 ## -
-- Materials
695 ## -
-- Mathematical model
695 ## -
-- Mathematics
695 ## -
-- Maxwell equations
695 ## -
-- Measurement units
695 ## -
-- Media
695 ## -
-- Microcomputers
695 ## -
-- Microstrip
695 ## -
-- Noise
695 ## -
-- Polarization
695 ## -
-- Power transmission lines
695 ## -
-- Predictive models
695 ## -
-- Propagation
695 ## -
-- Propagation losses
695 ## -
-- Receivers
695 ## -
-- Resistance
695 ## -
-- Response surface methodology
695 ## -
-- SPICE
695 ## -
-- Scattering parameters
695 ## -
-- Semiconductor device modeling
695 ## -
-- Semiconductor process modeling
695 ## -
-- Signal analysis
695 ## -
-- Signal to noise ratio
695 ## -
-- Silicon
695 ## -
-- Skin
695 ## -
-- Solid modeling
695 ## -
-- Statistics
695 ## -
-- Stripline
695 ## -
-- Surface impedance
695 ## -
-- Systems engineering and theory
695 ## -
-- Time domain analysis
695 ## -
-- Time frequency analysis
695 ## -
-- Timing
695 ## -
-- Transforms
695 ## -
-- Transistors
695 ## -
-- Transmission line measurements
695 ## -
-- Transmission lines
695 ## -
-- Transmitters

No items available.