Electromagnetic modeling and simulation / (Record no. 74345)

000 -LEADER
fixed length control field 15644nam a2201417 i 4500
001 - CONTROL NUMBER
control field 6798066
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205900.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151222s2014 nju ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781118716410
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- ePub
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- ePub
100 1# - AUTHOR NAME
Author Sevgi, Levent,
245 10 - TITLE STATEMENT
Title Electromagnetic modeling and simulation /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xxix, 663 pages).
490 1# - SERIES STATEMENT
Series statement IEEE Press series on electromagnetic wave theory
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface xvii -- About the Author xxvii -- Acknowledgments xxix -- 1 Introduction to MODSIM 1 -- 1.1 Models and Modeling, 2 -- 1.2 Validation, Verifi cation, and Calibration, 5 -- 1.3 Available Core Models, 7 -- 1.4 Model Selection Criteria, 9 -- 1.5 Graduate Level EM MODSIM Course, 11 -- 1.5.1 Course Description and Plan, 11 -- 1.5.2 Available Virtual EM Tools, 12 -- 1.6 EM-MODSIM Lecture Flow, 12 -- 1.7 Two Level EM Guided Wave Lecture, 17 -- 1.8 Conclusions, 19 -- References, 19 -- 2 Engineers Speak with Numbers 23 -- 2.1 Introduction, 23 -- 2.2 Measurement, Calculation, and Error Analysis, 24 -- 2.3 Significant Digits, Truncation, and Round-Off Errors, 27 -- 2.4 Error Propagation, 28 -- 2.5 Error and Confi dence Level, 29 -- 2.5.1 Predicting the Population's Confidence Interval, 33 -- 2.6 Hypothesis Testing, 36 -- 2.6.1 Testing Population Mean, 38 -- 2.6.2 Testing Population Proportion, 39 -- 2.6.3 Testing Two Population Averages, 39 -- 2.6.4 Testing Two Population Proportions, 39 -- 2.6.5 Testing Paired Data, 40 -- 2.7 Hypothetical Tests on Cell Phones, 41 -- 2.8 Conclusions, 45 -- References, 45 -- 3 Numerical Analysis in Electromagnetics 47 -- 3.1 Taylor's Expansion and Numerical Differentiation, 47 -- 3.1.1 Taylor's Expansion and Ordinary Differential Equations, 50 -- 3.1.2 Poisson and Laplace Equations, 52 -- 3.1.3 An Iterative (Finite-Difference) Solution, 53 -- 3.2 Numerical Integration, 58 -- 3.2.1 Rectangular Method, 58 -- 3.3 Nonlinear Equations and Root Search, 62 -- 3.4 Linear Systems of Equations, 64 -- References, 69 -- 4 Fourier Transform and Fourier Series 71 -- 4.1 Introduction, 71 -- 4.2 Fourier Transform, 72 -- 4.2.1 Fourier Transform (FT), 72 -- 4.2.2 Discrete Fourier Transform (DFT), 74 -- 4.2.3 Fast Fourier Transform (FFT), 76 -- 4.2.4 Aliasing, Spectral Leakage, and Scalloping Loss, 77 -- 4.2.5 Windowing and Window Functions, 80 -- 4.3 Basic Discretization Requirements, 81 -- 4.4 Fourier Series Representation, 85 -- 4.5 Rectangular Pulse and Its Harmonics, 92.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 4.6 Conclusions, 92 -- References, 94 -- 5 Stochastic Modeling in Electromagnetics 95 -- 5.1 Introduction, 95 -- 5.2 Radar Signal Environment, 98 -- 5.2.1 Random Number Generation, 98 -- 5.2.2 Noise Generation, 101 -- 5.2.3 Signal Generation, 108 -- 5.2.4 Clutter Generation, 108 -- 5.3 Total Radar Signal, 111 -- 5.4 Decision Making and Detection, 114 -- 5.4.1 Hypothesis Operating Characteristics (HOCs), 115 -- 5.4.2 A Communication/Radar Receiver, 119 -- 5.5 Conclusions, 129 -- References, 130 -- 6 Electromagnetic Theory: Basic Review 133 -- 6.1 Maxwell Equations and Reduction, 133 -- 6.2 Waveguiding Structures, 134 -- 6.3 Radiation Problems and Vector Potentials, 136 -- 6.4 The Delta Dirac Function, 138 -- 6.5 Coordinate Systems and Basic Operators, 139 -- 6.6 The Point Source Representation, 141 -- 6.7 Field Representation of a Point/Line Source, 142 -- 6.8 Alternative Field Representations, 143 -- 6.9 Transverse Electric/Magnetic Fields, 145 -- 6.9.1 The 3D TE/TM Waves, 145 -- 6.9.2 The 2D TE/TM Waves, 146 -- 6.10 The TE/TM Source Injection, 151 -- 6.11 Second-Order EM Differential Equations, 154 -- 6.12 EM Wave-Transmission Line Analogy, 155 -- 6.13 Time Dependence in Maxwell Equations, 157 -- 6.14 Physical Fundamentals, 158 -- References, 158 -- 7 Sturm-Liouville Equation: The Bridge between Eigenvalue and Green's Function Problems 161 -- 7.1 Introduction, 161 -- 7.2 Guided Wave Scenarios, 162 -- 7.3 The Sturm-Liouville Equation, 165 -- 7.3.1 The Eigenvalue Problem, 167 -- 7.3.2 The Green's Function (GF) Problem, 168 -- 7.3.3 Finite z-Domain Problem, 169 -- 7.3.4 Infi nite z-Domain Problem, 170 -- 7.3.5 Relation between Eigenvalue and Green's Function Problems, 171 -- 7.4 Conclusions, 172 -- References, 173 -- 8 The 2D Nonpenetrable Parallel Plate Waveguide 175 -- 8.1 Introduction, 176 -- 8.2 Propagation Inside a 2D-PEC Parallel Plate Waveguide, 177 -- 8.2.1 Formulation of the TE- and TM-Type Problems, 178 -- 8.2.2 The Green's Function Problem, 181 -- 8.2.3 Accessing the Spectral Domain: Separation of Variables, 182.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 8.2.4 Spectral Representations: Eigenvalue Problems, 183 -- 8.2.5 Spectral Representations: 1D Characteristic Green's Functions, 184 -- 8.2.6 The 2D Green's Function Problem: Alternative Representations, 185 -- 8.3 Alternative Representation: Eigenray Solution, 187 -- 8.3.1 Relation between Eigenmode and Eigenray Representations, 191 -- 8.3.2 2D GF and Hybrid Ray-Mode Decomposition, 192 -- 8.4 A 2D-PEC Parallel Plate Waveguide Simulator, 194 -- 8.4.1 Representations Used for Mode, Ray, and Hybrid Solutions, 195 -- 8.4.2 MATLAB Packages: RayMode and Hybrid, 207 -- 8.4.3 Numerical Examples, 210 -- 8.5 Eigenvalue Extraction from Propagation Characteristics, 215 -- 8.5.1 Longitudinal Correlation Function, 215 -- 8.5.2 Numerical Illustrations, 217 -- 8.6 Tilted Beam Excitation, 221 -- 8.7 Conclusions, 223 -- References, 225 -- 9 Wedge Waveguide with Nonpenetrable Boundaries 227 -- 9.1 Introduction, 228 -- 9.2 Statement of the Problem: Physical Configuration and Ray-Asymptotic Guided Wave Schematizations, 229 -- 9.3 Source-Free Solutions, 230 -- 9.3.1 Separable Coordinates: Conventional NM, 230 -- 9.3.2 Weakly Nonseparable Coordinates: AM, 231 -- 9.3.3 Uniformizing the AM Near Caustics: IM, 232 -- 9.4 Test Problem: The 2D Line-Source-Excited Nonpenetrable Wedge Waveguide, 234 -- 9.4.1 Exact Solution in Cylindrical Coordinate, 234 -- 9.4.2 Approximate Solutions in Rectangular Coordinates, 241 -- 9.4.3 IM Spectral Representation, 244 -- 9.5 The MATLAB Package (3z(BWedgeGUIDE,(3y(B 247 -- 9.6 Numerical Tests and Illustrations, 249 -- 9.7 Conclusions, 256 -- Appendix 9A: Formation of the Spectral IM Integral in Section 9.3.3, 257 -- References, 262 -- 10 High Frequency Asymptotics: The 2D Wedge Diffraction Problem 265 -- 10.1 Introduction, 266 -- 10.2 Plane Wave Illumination and HFA Models, 268 -- 10.2.1 Exact Solution by Series Summation, 268 -- 10.2.2 The Physical Optics (PO) Solution, 270 -- 10.2.3 The PTD Solution, 272 -- 10.2.4 The UTD Solution, 273 -- 10.2.5 The Parabolic Equation (PE) Solution, 275.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 10.3 HFA Models under Line Source (LS) Excitations, 275 -- 10.3.1 Exact Solution by Series Summation, 276 -- 10.3.2 Exact Solution by Integral, 277 -- 10.3.3 The Parabolic Equation (PE) Solution, 277 -- 10.4 Basic MATLAB Scripts, 278 -- 10.5 The WedgeGUI Virtual Tool and Some Examples, 291 -- 10.6 Conclusions, 297 -- References, 298 -- 11 Antennas: Isotropic Radiators and Beam Forming/Beam Steering 301 -- 11.1 Introduction, 301 -- 11.2 Arrays of Isotropic Radiators, 303 -- 11.3 The ARRAY Package, 306 -- 11.4 Beam Forming/Steering Examples, 310 -- 11.5 Conclusions, 317 -- References, 318 -- 12 Simple Propagation Models and Ray Solutions 319 -- 12.1 Introduction, 320 -- 12.2 Ray-Tracing Approaches, 321 -- 12.3 A Ray-Shooting MATLAB Package, 323 -- 12.4 Characteristic Examples, 329 -- 12.5 Flat-Earth Problem and 2Ray Model, 333 -- 12.6 Knife-Edge Problem and 4Ray Model, 338 -- 12.7 Ray Plus Diffraction Models, 348 -- 12.8 Conclusions, 351 -- References, 351 -- 13 Method of Moments 353 -- 13.1 Introduction, 353 -- 13.2 Approximating a Periodic Function by Other Functions: Fourier Series Representation, 354 -- 13.3 Introduction to the MoM, 359 -- 13.4 Simple Applications of MoM, 361 -- 13.4.1 An Ordinary Differential Equation, 361 -- 13.4.2 The Parallel Plate Capacitor, 364 -- 13.4.3 Propagation over PEC Flat Earth, 366 -- 13.5 MoM Applied to Radiation and Scattering Problems, 372 -- 13.5.1 A Complex Antenna Structure, 372 -- 13.5.2 Ground Wave Propagation Modeling, 373 -- 13.5.3 EM Scattering from Infinitely Long Cylinder, 376 -- 13.5.4 3D RCS Modeling, 381 -- 13.6 MoM Applied to Wedge Diffraction Problem, 386 -- 13.7 MoM Applied to Wedge Waveguide Problem, 397 -- 13.8 Conclusions, 402 -- References, 402 -- 14 Finite-Difference Time-Domain Method 407 -- 14.1 FDTD Representation of EM Plane Waves, 407 -- 14.1.1 Maxwell Equations and Plane Waves, 408 -- 14.1.2 FDTD and Discretization, 410 -- 14.1.3 A One-Dimensional FDTD MATLAB Script, 417 -- 14.1.4 MATLAB-Based FDTD1D Package, 417.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 14.2 Transmission Lines and Time-Domain Reflectometer, 429 -- 14.2.1 Transmission Line (TL) Theory, 430 -- 14.2.2 Plane Wave-Transmission Line Analogy, 434 -- 14.2.3 FDTD Representation of TL Equations, 437 -- 14.2.4 MATLAB-Based TDRMeter Package, 447 -- 14.2.5 Fourier Analysis and Reflection Characteristics, 454 -- 14.2.6 Laplace Analysis and Fault Identification, 456 -- 14.2.7 Step Response, 464 -- 14.3 1D FDTD with Second-Order Differential Equations, 468 -- 14.4 Two-Dimensional (2D) FDTD Modeling, 472 -- 14.4.1 Field Components and FDTD Equations, 476 -- 14.4.2 FDTD-Based Virtual Tool: MGL2D Package, 477 -- 14.4.3 Characteristic Examples, 479 -- 14.5 Canonical 2D Wedge Scattering Problem, 494 -- 14.5.1 Problem Postulation, 494 -- 14.5.2 Review of Analytical Models, 496 -- 14.5.3 The FDTD Model, 499 -- 14.5.4 Discretization and Dey-Mittra Approach, 502 -- 14.5.5 The WedgeFDTD Package and Examples, 505 -- 14.5.6 Wedge Diffraction and FDTD versus MoM, 510 -- 14.6 Conclusions, 512 -- References, 512 -- 15 Parabolic Equation Method 515 -- 15.1 Introduction, 516 -- 15.2 The Parabolic Equation (PE) Model, 518 -- 15.3 The Split-Step Parabolic Equation (SSPE) Propagation Tool, 520 -- 15.4 The Finite Element Method-Based PE Propagation Tool, 528 -- 15.5 Atmospheric Refractivity Effects, 531 -- 15.6 A 2D Surface Duct Scenario and Reference Solutions, 533 -- 15.7 LINPE Algorithm and Canonical Tests/Comparisons, 538 -- 15.8 The GrSSPE Package, 558 -- 15.9 The Single-Knife-Edge Problem, 566 -- 15.10 Accurate Source Modeling, 571 -- 15.11 Dielectric Slab Waveguide, 580 -- 15.11.1 Even and Odd Symmetric Solutions, 582 -- 15.11.2 The SSPE Propagator and Eigenvalue Extraction, 584 -- 15.11.3 The Matlab-Based DiSLAB Package, 585 -- 15.12 Conclusions, 591 -- References, 591 -- 16 Parallel Plate Waveguide Problem 595 -- 16.1 Introduction, 595 -- 16.2 Problem Postulation and Analytical Solutions: Revisited, 599 -- 16.2.1 Green's Function in Terms of Mode Summation, 602 -- 16.2.2 Mode Summation for a Tilted/Directive Antenna, 604.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 16.2.3 Eigenray Representation, 606 -- 16.2.4 Hybrid Ray + Image Method, 613 -- 16.3 Numerical Models, 613 -- 16.3.1 Split Step Parabolic Equation Model, 613 -- 16.3.2 Finite-Difference Time-Domain Model, 617 -- 16.3.3 Method of Moments (MoM), 622 -- 16.4 Conclusions, 638 -- References, 639 -- Appendix A Introduction to MATLAB 643 -- Appendix B Suggested References 653 -- Appendix C Suggested Tutorials and Feature Articles 655 -- Index 659.
520 ## - SUMMARY, ETC.
Summary, etc "Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In Electromagnetic Modeling and Simulation, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. The book thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling. Access to online MATLAB scripts and coding tools render this book an ideal resource for electrical engineers and researchers"--
520 ## - SUMMARY, ETC.
Summary, etc "Provides the reader with first steps in EM MODSIM as well as tools for medium and high-level code developers and users"--
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Electromagnetism
General subdivision Computer simulation.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6798066
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- John Wiley & Sons, Inc.,
-- [2014]
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2014]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
520 ## - SUMMARY, ETC.
-- Provided by publisher.
520 ## - SUMMARY, ETC.
-- Provided by publisher.
588 ## -
-- Description based on PDF viewed 12/22/2015.
695 ## -
-- Accuracy
695 ## -
-- Analytical models
695 ## -
-- Antenna arrays
695 ## -
-- Antenna radiation patterns
695 ## -
-- Approximation methods
695 ## -
-- Arrays
695 ## -
-- Atmospheric modeling
695 ## -
-- Atmospheric waves
695 ## -
-- Beam steering
695 ## -
-- Capacitance
695 ## -
-- Capacitors
695 ## -
-- Computational modeling
695 ## -
-- Couplings
695 ## -
-- Current measurement
695 ## -
-- Diffraction
695 ## -
-- Directive antennas
695 ## -
-- Discrete Fourier transforms
695 ## -
-- Earth
695 ## -
-- Eigenvalues and eigenfunctions
695 ## -
-- Electric fields
695 ## -
-- Electric potential
695 ## -
-- Electromagnetic waveguides
695 ## -
-- Electromagnetics
695 ## -
-- Equations
695 ## -
-- Finite difference methods
695 ## -
-- Fourier series
695 ## -
-- Geometry
695 ## -
-- Integrated circuit modeling
695 ## -
-- Intelligent sensors
695 ## -
-- Lighting
695 ## -
-- Limiting
695 ## -
-- MATLAB
695 ## -
-- Magnetic separation
695 ## -
-- Mathematical model
695 ## -
-- Maxwell equations
695 ## -
-- Measurement uncertainty
695 ## -
-- Method of moments
695 ## -
-- Nonhomogeneous media
695 ## -
-- Numerical analysis
695 ## -
-- Numerical models
695 ## -
-- Numerical simulation
695 ## -
-- Optical diffraction
695 ## -
-- Optical waveguides
695 ## -
-- Propagation
695 ## -
-- Radar
695 ## -
-- Random variables
695 ## -
-- Receivers
695 ## -
-- Rectangular waveguides
695 ## -
-- Reflection
695 ## -
-- Refractive index
695 ## -
-- Regions
695 ## -
-- Rivers
695 ## -
-- Scattering
695 ## -
-- Sensitivity
695 ## -
-- Standards
695 ## -
-- Stochastic processes
695 ## -
-- Surface impedance
695 ## -
-- Taylor series
695 ## -
-- Terrestrial atmosphere
695 ## -
-- Three-dimensional displays
695 ## -
-- Time-domain analysis
695 ## -
-- Time-frequency analysis
695 ## -
-- Trajectory
695 ## -
-- Uncertainty
695 ## -
-- Vectors
695 ## -
-- Visualization

No items available.