Microwave amplifier and active circuit design using the real frequency technique / (Record no. 74451)

000 -LEADER
fixed length control field 09620nam a2200853 i 4500
001 - CONTROL NUMBER
control field 7470995
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205930.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 160607s2016 nju ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119073093
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- hardback
082 00 - CLASSIFICATION NUMBER
Call Number 621.381/325
100 1# - AUTHOR NAME
Author Jarry, Pierre,
245 10 - TITLE STATEMENT
Title Microwave amplifier and active circuit design using the real frequency technique /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (288 pages).
505 0# - FORMATTED CONTENTS NOTE
Remark 2 -- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg / Marquardt / More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- 2.10 Realizations 59.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2 / 8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925 / 6.425 GHz Hybrid Amplifier 96 -- References 99 -- 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- 6.2 Multistage Power Amplifier Representation 152.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg / Marquardt / More Optimization Algorithm 239 -- Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Index 271.
520 ## - SUMMARY, ETC.
Summary, etc "The book summarizes broadband matching strategies using real frequency technique (RFT) assisted with CAD based optimization. The provides the fundamentals and know-how for designing and realizing RF/microwave amplifiers and circuits using the real frequency technique. The book also covers some sub system level applications such Radar receiver design. After introducing the RFT in Chapter 2 for the case of multistage amplifier design, each chapter introduces a new amplifier or active circuit design method using the RFT. Each design chapter summarizes the design steps and provides design examples. The book is divided into nine chapters"--
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Microwave amplifiers
General subdivision Design and construction.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Electric filters, Active
General subdivision Design and construction.
700 1# - AUTHOR 2
Author 2 Beneat, Jacques,
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7470995
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken :
-- John Wiley & Sons, Inc.,
-- 2016.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2016]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
520 ## - SUMMARY, ETC.
-- Provided by publisher.
588 ## -
-- Description based on PDF viewed 06/07/2016.
695 ## -
-- Active filters
695 ## -
-- Admittance
695 ## -
-- Antenna measurements
695 ## -
-- Broadband antennas
695 ## -
-- Distributed amplifiers
695 ## -
-- Equalizers
695 ## -
-- Frequency synthesizers
695 ## -
-- Horn antennas
695 ## -
-- Impedance
695 ## -
-- Microwave amplifiers
695 ## -
-- Microwave antennas
695 ## -
-- Microwave circuits
695 ## -
-- Microwave communication
695 ## -
-- Microwave filters
695 ## -
-- Optical fiber amplifiers
695 ## -
-- Optimization
695 ## -
-- Power amplifiers
695 ## -
-- Radar antennas
695 ## -
-- Radar applications
695 ## -
-- Reflection coefficient
695 ## -
-- Resistors
695 ## -
-- Scattering
695 ## -
-- Scattering parameters
695 ## -
-- Transducers
695 ## -
-- Transistors
695 ## -
-- Transmission line matrix methods
695 ## -
-- Transmitting antennas

No items available.