Lifelong Machine Learning, Second Edition (Record no. 85291)

000 -LEADER
fixed length control field 04702nam a22005415i 4500
001 - CONTROL NUMBER
control field 978-3-031-01581-6
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730164106.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220601s2018 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783031015816
-- 978-3-031-01581-6
082 04 - CLASSIFICATION NUMBER
Call Number 006.3
100 1# - AUTHOR NAME
Author Chen, Zhiyuan.
245 10 - TITLE STATEMENT
Title Lifelong Machine Learning, Second Edition
250 ## - EDITION STATEMENT
Edition statement 2nd ed. 2018.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XIX, 187 p.
490 1# - SERIES STATEMENT
Series statement Synthesis Lectures on Artificial Intelligence and Machine Learning,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Acknowledgments -- Introduction -- Related Learning Paradigms -- Lifelong Supervised Learning -- Continual Learning and Catastrophic Forgetting -- Open-World Learning -- Lifelong Topic Modeling -- Lifelong Information Extraction -- Continuous Knowledge Learning in Chatbots -- Lifelong Reinforcement Learning -- Conclusion and Future Directions -- Bibliography -- Authors' Biographies.
520 ## - SUMMARY, ETC.
Summary, etc Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks-which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning-most notably, multi-task learning, transfer learning, and meta-learning-because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.
700 1# - AUTHOR 2
Author 2 Liu, Bing.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-031-01581-6
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2018.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Artificial intelligence.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Machine learning.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Neural networks (Computer science) .
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Artificial Intelligence.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Machine Learning.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematical Models of Cognitive Processes and Neural Networks.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 1939-4616
912 ## -
-- ZDB-2-SXSC

No items available.