Numerical Integration of Space Fractional Partial Differential Equations (Record no. 85650)

000 -LEADER
fixed length control field 04331nam a22005295i 4500
001 - CONTROL NUMBER
control field 978-3-031-02412-2
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730164419.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220601s2018 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783031024122
-- 978-3-031-02412-2
082 04 - CLASSIFICATION NUMBER
Call Number 510
100 1# - AUTHOR NAME
Author Salehi, Younes.
245 10 - TITLE STATEMENT
Title Numerical Integration of Space Fractional Partial Differential Equations
Sub Title Vol 2 - Applications from Classical Integer PDEs /
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2018.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XII, 192 p.
490 1# - SERIES STATEMENT
Series statement Synthesis Lectures on Mathematics & Statistics,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Simultaneous SFPDEs -- Two Sided SFPDEs -- Integer to Fractional Extensions -- Authors' Biographies -- Index.
520 ## - SUMMARY, ETC.
Summary, etc <p>Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:</p><div><ul></div><div><li>Vol 1: Introduction to Algorithms and Computer Coding in R</li></div> <li>Vol 2: Applications from Classical Integer PDEs.</li></div><div></ul></div><div><p>Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.</p></div><div><p>In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:</p></div><div><ul></div> <li>Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions <li>Fisher-Kolmogorov SFPDE</li></div><div><li>Burgers SFPDE</li></div><div><li>Fokker-Planck SFPDE</li></div><div><li>Burgers-Huxley SFPDE</li></div><div><li>Fitzhugh-Nagumo SFPDE</li></div></ul></div><div><p>These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order ���� with 1 ≤ ���� ≤ 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume.</p></div><div><p>The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume.</p></div><div><p>The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).</p></div></div>.
700 1# - AUTHOR 2
Author 2 Schiesser, William E.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-031-02412-2
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2018.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Statistics .
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Engineering mathematics.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Statistics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Engineering Mathematics.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 1938-1751
912 ## -
-- ZDB-2-SXSC

No items available.