Recommender Systems (Record no. 87749)

000 -LEADER
fixed length control field 03606nam a22006135i 4500
001 - CONTROL NUMBER
control field 978-981-99-8964-5
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730171705.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240325s2024 si | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9789819989645
-- 978-981-99-8964-5
082 04 - CLASSIFICATION NUMBER
Call Number 025.04
100 1# - AUTHOR NAME
Author Li, Dongsheng.
245 10 - TITLE STATEMENT
Title Recommender Systems
Sub Title Frontiers and Practices /
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2024.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XVI, 280 p. 92 illus., 75 illus. in color.
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Chapter 1. Overview of Recommender Systems -- Chapter 2. Classic Recommendation Algorithms -- Chapter 3. Foundations of Deep Learning -- Chapter 4. Deep Learning-based Recommendation Algorithms -- Chapter 5. Recommender System Frontier Topics. Chapter 6. Practical Recommender System -- Chapter 7. Summary and Outlook.
520 ## - SUMMARY, ETC.
Summary, etc This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch. .
700 1# - AUTHOR 2
Author 2 Lian, Jianxun.
700 1# - AUTHOR 2
Author 2 Zhang, Le.
700 1# - AUTHOR 2
Author 2 Ren, Kan.
700 1# - AUTHOR 2
Author 2 Lu, Tun.
700 1# - AUTHOR 2
Author 2 Wu, Tao.
700 1# - AUTHOR 2
Author 2 Xie, Xing.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-981-99-8964-5
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Singapore :
-- Springer Nature Singapore :
-- Imprint: Springer,
-- 2024.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Information storage and retrieval systems.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data mining.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Artificial intelligence.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Information Storage and Retrieval.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data Mining and Knowledge Discovery.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Artificial Intelligence.
912 ## -
-- ZDB-2-SCS
912 ## -
-- ZDB-2-SXCS

No items available.