Normal view MARC view ISBD view

A Brief Introduction to Continuous Evolutionary Optimization [electronic resource] / by Oliver Kramer.

By: Kramer, Oliver [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: SpringerBriefs in Applied Sciences and Technology: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XI, 94 p. 29 illus., 24 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319034225.Subject(s): Engineering | Artificial intelligence | Computational intelligence | Engineering | Computational Intelligence | Artificial Intelligence (incl. Robotics)Additional physical formats: Printed edition:: No titleDDC classification: 006.3 Online resources: Click here to access online
Contents:
Part I Foundations -- Part II Advanced Optimization -- Part III Learning -- Part IV Appendix.
In: Springer eBooksSummary: Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator, and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.
    average rating: 0.0 (0 votes)
No physical items for this record

Part I Foundations -- Part II Advanced Optimization -- Part III Learning -- Part IV Appendix.

Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator, and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods.

There are no comments for this item.

Log in to your account to post a comment.