Normal view MARC view ISBD view

Non-Equilibrium Phenomena near Vapor-Liquid Interfaces [electronic resource] / by Alexei Kryukov, Vladimir Levashov, Yulia Puzina.

By: Kryukov, Alexei [author.].
Contributor(s): Levashov, Vladimir [author.] | Puzina, Yulia [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: SpringerBriefs in Applied Sciences and Technology: Publisher: Heidelberg : Springer International Publishing : Imprint: Springer, 2013Description: X, 54 p. 24 illus., 9 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319000831.Subject(s): Engineering | Thermodynamics | Heat engineering | Heat transfer | Mass transfer | Fluid mechanics | Nuclear engineering | Engineering | Engineering Thermodynamics, Heat and Mass Transfer | Nuclear Engineering | Engineering Fluid DynamicsAdditional physical formats: Printed edition:: No titleDDC classification: 621.4021 Online resources: Click here to access online
Contents:
Introduction -- Background for pure (one component) substance -- Evaporation and condensation of vapor-gas mixtures -- Motion of vapor-liquid interfaces -- Liquid - vapor interface form determination.
In: Springer eBooksSummary: This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in liquid greatly depends on heat flux in the interface. Thus a new type of hydrostatic problems appears when in contrast to traditional statements the shape of the liquid-vapor interface has a complex profile with a point of inflection and a smooth exit on a free liquid surface.
    average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Background for pure (one component) substance -- Evaporation and condensation of vapor-gas mixtures -- Motion of vapor-liquid interfaces -- Liquid - vapor interface form determination.

This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in liquid greatly depends on heat flux in the interface. Thus a new type of hydrostatic problems appears when in contrast to traditional statements the shape of the liquid-vapor interface has a complex profile with a point of inflection and a smooth exit on a free liquid surface.

There are no comments for this item.

Log in to your account to post a comment.