Normal view MARC view ISBD view

Fault-Tolerance Techniques for High-Performance Computing [electronic resource] / edited by Thomas Herault, Yves Robert.

Contributor(s): Herault, Thomas [editor.] | Robert, Yves [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Computer Communications and Networks: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: IX, 320 p. 113 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319209432.Subject(s): Computer science | Computer software -- Reusability | Computer system failures | Numerical analysis | Computer Science | System Performance and Evaluation | Performance and Reliability | Numeric ComputingAdditional physical formats: Printed edition:: No titleDDC classification: 004.24 Online resources: Click here to access online
Contents:
Part I: General Overview -- Fault-Tolerance Techniques for High-Performance Computing -- Part II: Technical Contributions -- Errors and Faults -- Fault-Tolerant MPI -- Using Replication for Resilience on Exascale Systems -- Energy-Aware Check pointing Strategies.
In: Springer eBooksSummary: This timely text/reference presents a comprehensive overview of fault tolerance techniques for high-performance computing (HPC). The text opens with a detailed introduction to the concepts of checkpoint protocols and scheduling algorithms, prediction, replication, silent error detection and correction, together with some application-specific techniques such as algorithm-based fault tolerance. Emphasis is placed on analytical performance models. This is then followed by a review of general-purpose techniques, including several checkpoint and rollback recovery protocols. Relevant execution scenarios are also evaluated and compared through quantitative models. Topics and features: Includes self-contained contributions from an international selection of preeminent experts Provides a survey of resilience methods and performance models Examines the various sources for errors and faults in large-scale systems, detailing their characteristics, with a focus on modeling, detection and prediction Reviews the spectrum of techniques that can be applied to design a fault-tolerant message passing interface Investigates different approaches to replication, comparing these to the traditional checkpoint-recovery approach Discusses the challenge of energy consumption of fault-tolerance methods in extreme-scale systems, proposing a methodology to estimate such energy consumption This authoritative volume is essential reading for all researchers and graduate students involved in high-performance computing. Dr. Thomas Herault is a Research Scientist in the Innovative Computing Laboratory (ICL) at the University of Tennessee Knoxville, TN, USA. Dr. Yves Robert is a Professor in the Laboratory of Parallel Computing at the Ecole Normale Sup�erieure de Lyon, France, and a Visiting Research Scholar in the ICL.
    average rating: 0.0 (0 votes)
No physical items for this record

Part I: General Overview -- Fault-Tolerance Techniques for High-Performance Computing -- Part II: Technical Contributions -- Errors and Faults -- Fault-Tolerant MPI -- Using Replication for Resilience on Exascale Systems -- Energy-Aware Check pointing Strategies.

This timely text/reference presents a comprehensive overview of fault tolerance techniques for high-performance computing (HPC). The text opens with a detailed introduction to the concepts of checkpoint protocols and scheduling algorithms, prediction, replication, silent error detection and correction, together with some application-specific techniques such as algorithm-based fault tolerance. Emphasis is placed on analytical performance models. This is then followed by a review of general-purpose techniques, including several checkpoint and rollback recovery protocols. Relevant execution scenarios are also evaluated and compared through quantitative models. Topics and features: Includes self-contained contributions from an international selection of preeminent experts Provides a survey of resilience methods and performance models Examines the various sources for errors and faults in large-scale systems, detailing their characteristics, with a focus on modeling, detection and prediction Reviews the spectrum of techniques that can be applied to design a fault-tolerant message passing interface Investigates different approaches to replication, comparing these to the traditional checkpoint-recovery approach Discusses the challenge of energy consumption of fault-tolerance methods in extreme-scale systems, proposing a methodology to estimate such energy consumption This authoritative volume is essential reading for all researchers and graduate students involved in high-performance computing. Dr. Thomas Herault is a Research Scientist in the Innovative Computing Laboratory (ICL) at the University of Tennessee Knoxville, TN, USA. Dr. Yves Robert is a Professor in the Laboratory of Parallel Computing at the Ecole Normale Sup�erieure de Lyon, France, and a Visiting Research Scholar in the ICL.

There are no comments for this item.

Log in to your account to post a comment.