Normal view MARC view ISBD view

Modeling and Control of a Large Nuclear Reactor [electronic resource] : A Three-Time-Scale Approach / by S R Shimjith, A P Tiwari, B Bandyopadhyay.

By: Shimjith, S R [author.].
Contributor(s): Tiwari, A P [author.] | Bandyopadhyay, B [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes in Control and Information Sciences: 431Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Description: XXII, 138 p. 76 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783642305894.Subject(s): Engineering | Control engineering | Nuclear engineering | Engineering | Control | Nuclear EngineeringAdditional physical formats: Printed edition:: No titleDDC classification: 629.8 Online resources: Click here to access online
Contents:
Multipoint Kinetics Modeling of Large Nuclear Reactors -- Output Feedback Control Design -- Multiparameter Singular Perturbation of Linear Optimal Regulators -- Direct Block Diagonalization and Composite Control of Three-Time-Scale Systems -- Design of Fast Output Sampling Controller for Three-Time-Scale Systems.
In: Springer eBooksSummary: Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.
    average rating: 0.0 (0 votes)
No physical items for this record

Multipoint Kinetics Modeling of Large Nuclear Reactors -- Output Feedback Control Design -- Multiparameter Singular Perturbation of Linear Optimal Regulators -- Direct Block Diagonalization and Composite Control of Three-Time-Scale Systems -- Design of Fast Output Sampling Controller for Three-Time-Scale Systems.

Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

There are no comments for this item.

Log in to your account to post a comment.