Normal view MARC view ISBD view

Mobility protocols and handover optimization : design, evaluation and application / Ashutosh Dutta, Henning Schulzrinne.

By: Dutta, Ashutosh [author.].
Contributor(s): Schulzrinne, Henning [author.] | IEEE Xplore (Online Service) [distributor.] | Wiley [publisher.].
Material type: materialTypeLabelBookSeries: Wiley - IEEE: Publisher: Chichester, West Sussex : IEEE Press : Wiley, [2014]Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2014]Edition: First edition.Description: 1 PDF (xxxiv, 442 pages).Content type: text Media type: electronic Carrier type: online resourceISBN: 9781119945505.Subject(s): Mobile communication systems | Computer network protocols | Analytical models | Authentication | Base stations | Content distribution networks | Delays | Handover | IEEE 802.11 Standards | IP networks | Manganese | Mathematical model | Media | Mobile communication | Mobile computing | Mobile nodes | Mobile radio mobility management | Multiaccess communication | Nonhomogeneous media | Optimization | Petri nets | Predictive models | Probes | Protocols | Real-time systems | Routing protocols | Schedules | Sections | Security | Servers | System performance | Time division multiple accessGenre/Form: Electronic books.Additional physical formats: Print version:: No titleOnline resources: Abstract with links to resource Also available in print.
Contents:
About the Authors xv -- Foreword xvii -- Preface xix -- Acknowledgements xxiii -- List of Abbreviations xxv -- 1 Introduction 1 -- 1.1 Types of Mobility 2 -- 1.1.1 Terminal Mobility 2 -- 1.1.2 Personal Mobility 5 -- 1.1.3 Session Mobility 6 -- 1.1.4 Service Mobility 7 -- 1.2 Performance Requirements 7 -- 1.3 Motivation 8 -- 1.4 Summary of Key Contributions 9 -- 2 Analysis of Mobility Protocols for Multimedia 13 -- 2.1 Summary of Key Contributions and Indicative Results 13 -- 2.2 Introduction 14 -- 2.3 Cellular 1G 15 -- 2.3.1 System Architecture 15 -- 2.3.2 Handoff Procedure 17 -- 2.4 Cellular 2G Mobility 17 -- 2.4.1 GSM 17 -- 2.4.2 IS-95 19 -- 2.5 Cellular 3G Mobility 23 -- 2.5.1 WCDMA 24 -- 2.5.2 CDMA2000 26 -- 2.6 4G Networks 27 -- 2.6.1 Evolved Packet System 28 -- 2.6.2 WiMAX Mobility 31 -- 2.7 IP-Based Mobility 34 -- 2.7.1 Network Layer Macromobility 34 -- 2.7.2 Network Layer Micromobility 40 -- 2.7.3 NETMOB: Network Mobility 46 -- 2.7.4 Transport Layer Mobility 49 -- 2.7.5 Application Layer Mobility 49 -- 2.7.6 Host Identity Protocol 50 -- 2.7.7 MOBIKE 52 -- 2.7.8 IAPP 53 -- 2.8 Heterogeneous Handover 55 -- 2.8.1 UMTS-WLAN Handover 55 -- 2.8.2 LTE-WLAN Handover 58 -- 2.9 Multicast Mobility 61 -- 2.10 Concluding Remarks 71 -- 3 Systems Analysis of Mobility Events 73 -- 3.1 Summary of Key Contributions and Indicative Results 75 -- 3.2 Introduction 75 -- 3.2.1 Comparative Analysis of Mobility Protocols 77 -- 3.3 Analysis of Handoff Components 78 -- 3.3.1 Network Discovery and Selection 80 -- 3.3.2 Network Attachment 80 -- 3.3.3 Configuration 81 -- 3.3.4 Security Association 81 -- 3.3.5 Binding Update 82 -- 3.3.6 Media Rerouting 83 -- 3.4 Effect of Handoff across Layers 83 -- 3.4.1 Layer 2 Delay 84 -- 3.4.2 Layer 3 Delay 84 -- 3.4.3 Application Layer Delay 85 -- 3.4.4 Handoff Operations across Layers 85 -- 3.5 Concluding Remarks 90 -- 4 Modeling Mobility 91 -- 4.1 Summary of Key Contributions and Indicative Results 91 -- 4.2 Introduction 92 -- 4.3 Related Work 92.
4.4 Modeling Mobility as a Discrete-Event Dynamic System 93 -- 4.5 Petri Net Primitives 94 -- 4.6 Petri-Net-Based Modeling Methodologies 96 -- 4.7 Resource Utilization during Handoff 97 -- 4.8 Data Dependency Analysis of the Handoff Process 99 -- 4.8.1 Petri-Net-Based Data Dependency 99 -- 4.8.2 Analysis of Data Dependency during Handoff Process 100 -- 4.9 Petri Net Model for Handoff 105 -- 4.10 Petri-Net-Based Analysis of Handoff Event 113 -- 4.10.1 Analysis of Deadlocks in Handoff 114 -- 4.10.2 Reachability Analysis 120 -- 4.10.3 Matrix Equations 122 -- 4.11 Evaluation of Systems Performance Using Petri Nets 123 -- 4.11.1 Cycle-Time-Based Approach 123 -- 4.11.2 Floyd-Algorithm-Based Approach 124 -- 4.11.3 Resource-Time Product Approach 125 -- 4.12 Opportunities for Optimization 128 -- 4.12.1 Analysis of Parallelism in Handoff Operations 129 -- 4.12.2 Opportunities for Proactive Operation 129 -- 4.13 Concluding Remarks 130 -- 5 Layer 2 Optimization 131 -- 5.1 Introduction 131 -- 5.2 Related Work 131 -- 5.3 IEEE 802.11 Standards 132 -- 5.3.1 The IEEE 802.11 Wireless LAN Architecture 133 -- 5.3.2 IEEE 802.11 Management Frames 134 -- 5.4 Handoff Procedure with Active Scanning 135 -- 5.4.1 Steps during Handoff 135 -- 5.5 Fast-Handoff Algorithm 137 -- 5.5.1 Selective Scanning 137 -- 5.5.2 Caching 138 -- 5.6 Implementation 142 -- 5.6.1 The HostAP Driver 142 -- 5.7 Measurements 142 -- 5.7.1 Experimental Setup 142 -- 5.7.2 The Environment 142 -- 5.7.3 Experiments 143 -- 5.8 Measurement Results 143 -- 5.8.1 Handoff Time 143 -- 5.8.2 Packet Loss 143 -- 5.9 Conclusions and Future Work 146 -- 6 Mobility Optimization Techniques 149 -- 6.1 Summary of Key Contributions and Indicative Results 149 -- 6.1.1 Discovery 149 -- 6.1.2 Authentication 150 -- 6.1.3 Layer 3 Configuration 151 -- 6.1.4 Layer 3 Security Association 152 -- 6.1.5 Binding Update 152 -- 6.1.6 Media Rerouting 153 -- 6.1.7 Route Optimization 154 -- 6.1.8 Media-Independent Cross-Layer Triggers 155 -- 6.2 Introduction 156.
6.3 Discovery 156 -- 6.3.1 Key Principles 156 -- 6.3.2 Related Work 157 -- 6.3.3 Application Layer Discovery 158 -- 6.3.4 Experimental Results and Analysis 161 -- 6.4 Authentication 164 -- 6.4.1 Key Principles 166 -- 6.4.2 Related Work 166 -- 6.4.3 Network-Layer-Assisted Preauthentication 169 -- 6.4.4 Experimental Results and Analysis 173 -- 6.5 Layer 3 Configuration 177 -- 6.5.1 Key Principles 179 -- 6.5.2 Related Work 180 -- 6.5.3 Router-Assisted Duplicate Address Detection 180 -- 6.5.4 Proactive IP Address Configuration 180 -- 6.5.5 Experimental Results and Analysis 183 -- 6.6 Layer 3 Security Association 183 -- 6.6.1 Key Principles 184 -- 6.6.2 Related Work 184 -- 6.6.3 Anchor-Assisted Security Association 184 -- 6.6.4 Experimental Results and Analysis 187 -- 6.7 Binding Update 190 -- 6.7.1 Key Principles 191 -- 6.7.2 Related Work 191 -- 6.7.3 Hierarchical Binding Update 192 -- 6.7.4 Experimental Results and Analysis 195 -- 6.7.5 Proactive Binding Update 199 -- 6.8 Media Rerouting 199 -- 6.8.1 Key Principles 200 -- 6.8.2 Related Work 200 -- 6.8.3 Data Redirection Using Forwarding Agent 201 -- 6.8.4 Mobility-Proxy-Assisted Time-Bound Data Redirection 202 -- 6.8.5 Time-Bound Localized Multicasting 205 -- 6.9 Media Buffering 210 -- 6.9.1 Key Principles 211 -- 6.9.2 Related Work 211 -- 6.9.3 Protocol for Edge Buffering 212 -- 6.9.4 Experimental Results and Analysis 215 -- 6.9.5 Analysis of the Trade-off between Buffering Delay and Packet Loss 219 -- 6.10 Route Optimization 220 -- 6.10.1 Key Principles 221 -- 6.10.2 Related Work 221 -- 6.10.3 Maintaining a Direct Path by Application Layer Mobility 221 -- 6.10.4 Interceptor-Assisted Packet Modifier at the End Point 222 -- 6.10.5 Intercepting Proxy-Assisted Route Optimization 224 -- 6.10.6 Cost Analysis and Experimental Analysis 226 -- 6.10.7 Binding-Cache-Based Route Optimization 229 -- 6.11 Media-Independent Cross-Layer Triggers 232 -- 6.11.1 Key Principles 232 -- 6.11.2 Related Work 232 -- 6.11.3 Media Independent Handover Function 233.
6.11.4 Faster Link-Down Detection Scheme 238 -- 6.12 Concluding Remarks 241 -- 7 Optimization with Multilayer Mobility Protocols 243 -- 7.1 Summary of Key Contributions and Indicative Results 243 -- 7.2 Introduction 244 -- 7.3 Key Principles 245 -- 7.4 Related Work 245 -- 7.5 Multilayer Mobility Approach 246 -- 7.5.1 Policy-Based Mobility Protocols: SIP and MIP-LR 247 -- 7.5.2 Integration of SIP and MIP-LR with MMP 248 -- 7.5.3 Integration of Global Mobility Protocol with Micromobility Protocol 250 -- 7.5.4 Implementation of Multilayer Mobility Protocols 250 -- 7.5.5 Implementation and Performance Issues 252 -- 7.6 Concluding Remarks 255 -- 8 Optimizations for Simultaneous Mobility 257 -- 8.1 Summary of Key Contributions and Indicative Results 257 -- 8.2 Introduction 258 -- 8.2.1 Analysis of Simultaneous Mobility 258 -- 8.3 Illustration of the Simultaneous Mobility Problem 260 -- 8.4 Related Work 262 -- 8.5 Key Optimization Techniques 262 -- 8.6 Analytical Framework 262 -- 8.6.1 Fundamental Concepts 262 -- 8.6.2 Handoff Sequences 263 -- 8.6.3 Binding Updates 264 -- 8.6.4 Location Proxies and Binding Update Proxies 265 -- 8.7 Analyzing the Simultaneous Mobility Problem 267 -- 8.8 Probability of Simultaneous Mobility 270 -- 8.9 Solutions 272 -- 8.9.1 Soft Handoff 273 -- 8.9.2 Receiver-Side Mechanisms 273 -- 8.9.3 Sender-Side Mechanisms 275 -- 8.10 Application of Solution Mechanisms 276 -- 8.10.1 Mobile IPv6 277 -- 8.10.2 MIP-LR 279 -- 8.10.3 SIP-Based Mobility 280 -- 8.11 Concluding Remarks 282 -- 9 Handoff Optimization for Multicast Streaming 285 -- 9.1 Summary of Key Contributions and Indicative Results 285 -- 9.2 Introduction 286 -- 9.3 Key Principles 289 -- 9.4 Related Work 290 -- 9.5 Mobility in a Hierarchical Multicast Architecture 291 -- 9.5.1 Channel Announcement 293 -- 9.5.2 Channel Management 293 -- 9.5.3 Channel Tuning 293 -- 9.5.4 Local Advertisement Insertion 294 -- 9.5.5 Channel Monitor 294 -- 9.5.6 Security 295 -- 9.6 Optimization Techniques for Multicast Media Delivery 296.
9.6.1 Reactive Triggering 296 -- 9.6.2 Proactive Triggering 297 -- 9.6.3 Triggering during Configuration of a Mobile 298 -- 9.7 Experimental Results and Performance Analysis 299 -- 9.7.1 Experimental Results 299 -- 9.7.2 Performance Analysis 302 -- 9.8 Concluding Remarks 305 -- 10 Cooperative Roaming 307 -- 10.1 Introduction 307 -- 10.2 Related Work 309 -- 10.3 IP Multicast Addressing 310 -- 10.4 Cooperative Roaming 311 -- 10.4.1 Overview 311 -- 10.4.2 L2 Cooperation Protocol 312 -- 10.4.3 L3 Cooperation Protocol 313 -- 10.5 Cooperative Authentication 314 -- 10.5.1 Overview of IEEE 802.1x 314 -- 10.5.2 Cooperation in the Authentication Process 315 -- 10.5.3 Relay Process 316 -- 10.6 Security 318 -- 10.6.1 Security Issues in Roaming 318 -- 10.6.2 Cooperative Authentication and Security 319 -- 10.7 Streaming Media Support 320 -- 10.8 Bandwidth and Energy Usage 320 -- 10.9 Experiments 321 -- 10.9.1 Environment 321 -- 10.9.2 Implementation Details 322 -- 10.9.3 Experimental Setup 322 -- 10.9.4 Results 323 -- 10.10 Application Layer Mobility 328 -- 10.11 Load Balancing 329 -- 10.12 Multicast and Scalability 330 -- 10.13 An Alternative to Multicast 330 -- 10.14 Conclusions and Future Work 331 -- 11 System Evaluation 333 -- 11.1 Summary of Key Contributions and Indicative Results 333 -- 11.2 Introduction 334 -- 11.3 Experimental Validation 334 -- 11.3.1 The Media Independent Preauthentication Framework 334 -- 11.3.2 Intratechnology Handoff 338 -- 11.3.3 Intertechnology Handoff 340 -- 11.3.4 Cross-Layer-Trigger-Assisted Preauthentication 342 -- 11.3.5 Mobile-Initiated Handover with 802.21 Triggers 344 -- 11.3.6 Network-Initiated Handover with 802.21 Triggers 345 -- 11.3.7 Handover Preparation Time 346 -- 11.4 Handoff Optimization in IP Multimedia Subsystem 350 -- 11.4.1 Nonoptimized Handoff Mode 350 -- 11.4.2 Optimization with Reactive Context Transfer 351 -- 11.4.3 Optimization with Proactive Security Context Transfer 352 -- 11.4.4 Performance Results 353 -- 11.5 Systems Validation Using Petri-Net-Based Models 355.
11.5.1 MATLABª-Based Modeling of Handoff Functions 356 -- 11.5.2 Petri-Net-Based Model for Optimized Security Association 360 -- 11.5.3 Petri-Net-Based Model for Hierarchical Binding Update 361 -- 11.5.4 Petri-Net-Based Model for Media Redirection of In-Flight Data 362 -- 11.5.5 Petri-Net-Based Model of Optimized Configuration 364 -- 11.5.6 Petri-Net-Based Model for Multicast Mobility 364 -- 11.6 Scheduling Handoff Operations 365 -- 11.6.1 Sequential Scheduling 366 -- 11.6.2 Concurrent Scheduling 368 -- 11.6.3 Proactive Scheduling 368 -- 11.7 Verification of Systems Performance 369 -- 11.7.1 Cycle-Time-Based Approach 369 -- 11.7.2 Using the Floyd Algorithm 370 -- 11.8 Petri-Net-Based Modeling for Multi-Interface Mobility 371 -- 11.8.1 Multihoming Scenario 371 -- 11.8.2 Break-Before-Make Scenario 372 -- 11.8.3 Make-Before-Break Scenario 372 -- 11.8.4 MATLABª-Based Petri Net Modeling for Multi-Interface Mobility 372 -- 11.9 Deadlocks in Handoff Scheduling 374 -- 11.9.1 Handoff Schedules with Deadlocks 375 -- 11.9.2 Deadlock Prevention and Avoidance in Handoff Schedules 377 -- 11.10 Analysis of Level of Concurrency and Resources 380 -- 11.11 Trade-off Analysis for Proactive Handoff 385 -- 11.12 Concluding Remarks 389 -- 12 Conclusions 391 -- 12.1 General Principles of Mobility Optimization 391 -- 12.2 Summary of Contributions 393 -- 12.3 Future Work 394 -- A RDF Schema for Application Layer Discovery 395 -- A.1 Schema Primitives 395 -- B Definitions of Mobility-Related Terms 399 -- References 409 -- Index 425.
Summary: "In this book, the authors show how an optimized system of mobility management can improve the quality of service in existing forms of mobile communication"-- Provided by publisher.
    average rating: 0.0 (0 votes)
No physical items for this record

Edition statement from running title area.

Includes bibliographical references and index.

About the Authors xv -- Foreword xvii -- Preface xix -- Acknowledgements xxiii -- List of Abbreviations xxv -- 1 Introduction 1 -- 1.1 Types of Mobility 2 -- 1.1.1 Terminal Mobility 2 -- 1.1.2 Personal Mobility 5 -- 1.1.3 Session Mobility 6 -- 1.1.4 Service Mobility 7 -- 1.2 Performance Requirements 7 -- 1.3 Motivation 8 -- 1.4 Summary of Key Contributions 9 -- 2 Analysis of Mobility Protocols for Multimedia 13 -- 2.1 Summary of Key Contributions and Indicative Results 13 -- 2.2 Introduction 14 -- 2.3 Cellular 1G 15 -- 2.3.1 System Architecture 15 -- 2.3.2 Handoff Procedure 17 -- 2.4 Cellular 2G Mobility 17 -- 2.4.1 GSM 17 -- 2.4.2 IS-95 19 -- 2.5 Cellular 3G Mobility 23 -- 2.5.1 WCDMA 24 -- 2.5.2 CDMA2000 26 -- 2.6 4G Networks 27 -- 2.6.1 Evolved Packet System 28 -- 2.6.2 WiMAX Mobility 31 -- 2.7 IP-Based Mobility 34 -- 2.7.1 Network Layer Macromobility 34 -- 2.7.2 Network Layer Micromobility 40 -- 2.7.3 NETMOB: Network Mobility 46 -- 2.7.4 Transport Layer Mobility 49 -- 2.7.5 Application Layer Mobility 49 -- 2.7.6 Host Identity Protocol 50 -- 2.7.7 MOBIKE 52 -- 2.7.8 IAPP 53 -- 2.8 Heterogeneous Handover 55 -- 2.8.1 UMTS-WLAN Handover 55 -- 2.8.2 LTE-WLAN Handover 58 -- 2.9 Multicast Mobility 61 -- 2.10 Concluding Remarks 71 -- 3 Systems Analysis of Mobility Events 73 -- 3.1 Summary of Key Contributions and Indicative Results 75 -- 3.2 Introduction 75 -- 3.2.1 Comparative Analysis of Mobility Protocols 77 -- 3.3 Analysis of Handoff Components 78 -- 3.3.1 Network Discovery and Selection 80 -- 3.3.2 Network Attachment 80 -- 3.3.3 Configuration 81 -- 3.3.4 Security Association 81 -- 3.3.5 Binding Update 82 -- 3.3.6 Media Rerouting 83 -- 3.4 Effect of Handoff across Layers 83 -- 3.4.1 Layer 2 Delay 84 -- 3.4.2 Layer 3 Delay 84 -- 3.4.3 Application Layer Delay 85 -- 3.4.4 Handoff Operations across Layers 85 -- 3.5 Concluding Remarks 90 -- 4 Modeling Mobility 91 -- 4.1 Summary of Key Contributions and Indicative Results 91 -- 4.2 Introduction 92 -- 4.3 Related Work 92.

4.4 Modeling Mobility as a Discrete-Event Dynamic System 93 -- 4.5 Petri Net Primitives 94 -- 4.6 Petri-Net-Based Modeling Methodologies 96 -- 4.7 Resource Utilization during Handoff 97 -- 4.8 Data Dependency Analysis of the Handoff Process 99 -- 4.8.1 Petri-Net-Based Data Dependency 99 -- 4.8.2 Analysis of Data Dependency during Handoff Process 100 -- 4.9 Petri Net Model for Handoff 105 -- 4.10 Petri-Net-Based Analysis of Handoff Event 113 -- 4.10.1 Analysis of Deadlocks in Handoff 114 -- 4.10.2 Reachability Analysis 120 -- 4.10.3 Matrix Equations 122 -- 4.11 Evaluation of Systems Performance Using Petri Nets 123 -- 4.11.1 Cycle-Time-Based Approach 123 -- 4.11.2 Floyd-Algorithm-Based Approach 124 -- 4.11.3 Resource-Time Product Approach 125 -- 4.12 Opportunities for Optimization 128 -- 4.12.1 Analysis of Parallelism in Handoff Operations 129 -- 4.12.2 Opportunities for Proactive Operation 129 -- 4.13 Concluding Remarks 130 -- 5 Layer 2 Optimization 131 -- 5.1 Introduction 131 -- 5.2 Related Work 131 -- 5.3 IEEE 802.11 Standards 132 -- 5.3.1 The IEEE 802.11 Wireless LAN Architecture 133 -- 5.3.2 IEEE 802.11 Management Frames 134 -- 5.4 Handoff Procedure with Active Scanning 135 -- 5.4.1 Steps during Handoff 135 -- 5.5 Fast-Handoff Algorithm 137 -- 5.5.1 Selective Scanning 137 -- 5.5.2 Caching 138 -- 5.6 Implementation 142 -- 5.6.1 The HostAP Driver 142 -- 5.7 Measurements 142 -- 5.7.1 Experimental Setup 142 -- 5.7.2 The Environment 142 -- 5.7.3 Experiments 143 -- 5.8 Measurement Results 143 -- 5.8.1 Handoff Time 143 -- 5.8.2 Packet Loss 143 -- 5.9 Conclusions and Future Work 146 -- 6 Mobility Optimization Techniques 149 -- 6.1 Summary of Key Contributions and Indicative Results 149 -- 6.1.1 Discovery 149 -- 6.1.2 Authentication 150 -- 6.1.3 Layer 3 Configuration 151 -- 6.1.4 Layer 3 Security Association 152 -- 6.1.5 Binding Update 152 -- 6.1.6 Media Rerouting 153 -- 6.1.7 Route Optimization 154 -- 6.1.8 Media-Independent Cross-Layer Triggers 155 -- 6.2 Introduction 156.

6.3 Discovery 156 -- 6.3.1 Key Principles 156 -- 6.3.2 Related Work 157 -- 6.3.3 Application Layer Discovery 158 -- 6.3.4 Experimental Results and Analysis 161 -- 6.4 Authentication 164 -- 6.4.1 Key Principles 166 -- 6.4.2 Related Work 166 -- 6.4.3 Network-Layer-Assisted Preauthentication 169 -- 6.4.4 Experimental Results and Analysis 173 -- 6.5 Layer 3 Configuration 177 -- 6.5.1 Key Principles 179 -- 6.5.2 Related Work 180 -- 6.5.3 Router-Assisted Duplicate Address Detection 180 -- 6.5.4 Proactive IP Address Configuration 180 -- 6.5.5 Experimental Results and Analysis 183 -- 6.6 Layer 3 Security Association 183 -- 6.6.1 Key Principles 184 -- 6.6.2 Related Work 184 -- 6.6.3 Anchor-Assisted Security Association 184 -- 6.6.4 Experimental Results and Analysis 187 -- 6.7 Binding Update 190 -- 6.7.1 Key Principles 191 -- 6.7.2 Related Work 191 -- 6.7.3 Hierarchical Binding Update 192 -- 6.7.4 Experimental Results and Analysis 195 -- 6.7.5 Proactive Binding Update 199 -- 6.8 Media Rerouting 199 -- 6.8.1 Key Principles 200 -- 6.8.2 Related Work 200 -- 6.8.3 Data Redirection Using Forwarding Agent 201 -- 6.8.4 Mobility-Proxy-Assisted Time-Bound Data Redirection 202 -- 6.8.5 Time-Bound Localized Multicasting 205 -- 6.9 Media Buffering 210 -- 6.9.1 Key Principles 211 -- 6.9.2 Related Work 211 -- 6.9.3 Protocol for Edge Buffering 212 -- 6.9.4 Experimental Results and Analysis 215 -- 6.9.5 Analysis of the Trade-off between Buffering Delay and Packet Loss 219 -- 6.10 Route Optimization 220 -- 6.10.1 Key Principles 221 -- 6.10.2 Related Work 221 -- 6.10.3 Maintaining a Direct Path by Application Layer Mobility 221 -- 6.10.4 Interceptor-Assisted Packet Modifier at the End Point 222 -- 6.10.5 Intercepting Proxy-Assisted Route Optimization 224 -- 6.10.6 Cost Analysis and Experimental Analysis 226 -- 6.10.7 Binding-Cache-Based Route Optimization 229 -- 6.11 Media-Independent Cross-Layer Triggers 232 -- 6.11.1 Key Principles 232 -- 6.11.2 Related Work 232 -- 6.11.3 Media Independent Handover Function 233.

6.11.4 Faster Link-Down Detection Scheme 238 -- 6.12 Concluding Remarks 241 -- 7 Optimization with Multilayer Mobility Protocols 243 -- 7.1 Summary of Key Contributions and Indicative Results 243 -- 7.2 Introduction 244 -- 7.3 Key Principles 245 -- 7.4 Related Work 245 -- 7.5 Multilayer Mobility Approach 246 -- 7.5.1 Policy-Based Mobility Protocols: SIP and MIP-LR 247 -- 7.5.2 Integration of SIP and MIP-LR with MMP 248 -- 7.5.3 Integration of Global Mobility Protocol with Micromobility Protocol 250 -- 7.5.4 Implementation of Multilayer Mobility Protocols 250 -- 7.5.5 Implementation and Performance Issues 252 -- 7.6 Concluding Remarks 255 -- 8 Optimizations for Simultaneous Mobility 257 -- 8.1 Summary of Key Contributions and Indicative Results 257 -- 8.2 Introduction 258 -- 8.2.1 Analysis of Simultaneous Mobility 258 -- 8.3 Illustration of the Simultaneous Mobility Problem 260 -- 8.4 Related Work 262 -- 8.5 Key Optimization Techniques 262 -- 8.6 Analytical Framework 262 -- 8.6.1 Fundamental Concepts 262 -- 8.6.2 Handoff Sequences 263 -- 8.6.3 Binding Updates 264 -- 8.6.4 Location Proxies and Binding Update Proxies 265 -- 8.7 Analyzing the Simultaneous Mobility Problem 267 -- 8.8 Probability of Simultaneous Mobility 270 -- 8.9 Solutions 272 -- 8.9.1 Soft Handoff 273 -- 8.9.2 Receiver-Side Mechanisms 273 -- 8.9.3 Sender-Side Mechanisms 275 -- 8.10 Application of Solution Mechanisms 276 -- 8.10.1 Mobile IPv6 277 -- 8.10.2 MIP-LR 279 -- 8.10.3 SIP-Based Mobility 280 -- 8.11 Concluding Remarks 282 -- 9 Handoff Optimization for Multicast Streaming 285 -- 9.1 Summary of Key Contributions and Indicative Results 285 -- 9.2 Introduction 286 -- 9.3 Key Principles 289 -- 9.4 Related Work 290 -- 9.5 Mobility in a Hierarchical Multicast Architecture 291 -- 9.5.1 Channel Announcement 293 -- 9.5.2 Channel Management 293 -- 9.5.3 Channel Tuning 293 -- 9.5.4 Local Advertisement Insertion 294 -- 9.5.5 Channel Monitor 294 -- 9.5.6 Security 295 -- 9.6 Optimization Techniques for Multicast Media Delivery 296.

9.6.1 Reactive Triggering 296 -- 9.6.2 Proactive Triggering 297 -- 9.6.3 Triggering during Configuration of a Mobile 298 -- 9.7 Experimental Results and Performance Analysis 299 -- 9.7.1 Experimental Results 299 -- 9.7.2 Performance Analysis 302 -- 9.8 Concluding Remarks 305 -- 10 Cooperative Roaming 307 -- 10.1 Introduction 307 -- 10.2 Related Work 309 -- 10.3 IP Multicast Addressing 310 -- 10.4 Cooperative Roaming 311 -- 10.4.1 Overview 311 -- 10.4.2 L2 Cooperation Protocol 312 -- 10.4.3 L3 Cooperation Protocol 313 -- 10.5 Cooperative Authentication 314 -- 10.5.1 Overview of IEEE 802.1x 314 -- 10.5.2 Cooperation in the Authentication Process 315 -- 10.5.3 Relay Process 316 -- 10.6 Security 318 -- 10.6.1 Security Issues in Roaming 318 -- 10.6.2 Cooperative Authentication and Security 319 -- 10.7 Streaming Media Support 320 -- 10.8 Bandwidth and Energy Usage 320 -- 10.9 Experiments 321 -- 10.9.1 Environment 321 -- 10.9.2 Implementation Details 322 -- 10.9.3 Experimental Setup 322 -- 10.9.4 Results 323 -- 10.10 Application Layer Mobility 328 -- 10.11 Load Balancing 329 -- 10.12 Multicast and Scalability 330 -- 10.13 An Alternative to Multicast 330 -- 10.14 Conclusions and Future Work 331 -- 11 System Evaluation 333 -- 11.1 Summary of Key Contributions and Indicative Results 333 -- 11.2 Introduction 334 -- 11.3 Experimental Validation 334 -- 11.3.1 The Media Independent Preauthentication Framework 334 -- 11.3.2 Intratechnology Handoff 338 -- 11.3.3 Intertechnology Handoff 340 -- 11.3.4 Cross-Layer-Trigger-Assisted Preauthentication 342 -- 11.3.5 Mobile-Initiated Handover with 802.21 Triggers 344 -- 11.3.6 Network-Initiated Handover with 802.21 Triggers 345 -- 11.3.7 Handover Preparation Time 346 -- 11.4 Handoff Optimization in IP Multimedia Subsystem 350 -- 11.4.1 Nonoptimized Handoff Mode 350 -- 11.4.2 Optimization with Reactive Context Transfer 351 -- 11.4.3 Optimization with Proactive Security Context Transfer 352 -- 11.4.4 Performance Results 353 -- 11.5 Systems Validation Using Petri-Net-Based Models 355.

11.5.1 MATLABª-Based Modeling of Handoff Functions 356 -- 11.5.2 Petri-Net-Based Model for Optimized Security Association 360 -- 11.5.3 Petri-Net-Based Model for Hierarchical Binding Update 361 -- 11.5.4 Petri-Net-Based Model for Media Redirection of In-Flight Data 362 -- 11.5.5 Petri-Net-Based Model of Optimized Configuration 364 -- 11.5.6 Petri-Net-Based Model for Multicast Mobility 364 -- 11.6 Scheduling Handoff Operations 365 -- 11.6.1 Sequential Scheduling 366 -- 11.6.2 Concurrent Scheduling 368 -- 11.6.3 Proactive Scheduling 368 -- 11.7 Verification of Systems Performance 369 -- 11.7.1 Cycle-Time-Based Approach 369 -- 11.7.2 Using the Floyd Algorithm 370 -- 11.8 Petri-Net-Based Modeling for Multi-Interface Mobility 371 -- 11.8.1 Multihoming Scenario 371 -- 11.8.2 Break-Before-Make Scenario 372 -- 11.8.3 Make-Before-Break Scenario 372 -- 11.8.4 MATLABª-Based Petri Net Modeling for Multi-Interface Mobility 372 -- 11.9 Deadlocks in Handoff Scheduling 374 -- 11.9.1 Handoff Schedules with Deadlocks 375 -- 11.9.2 Deadlock Prevention and Avoidance in Handoff Schedules 377 -- 11.10 Analysis of Level of Concurrency and Resources 380 -- 11.11 Trade-off Analysis for Proactive Handoff 385 -- 11.12 Concluding Remarks 389 -- 12 Conclusions 391 -- 12.1 General Principles of Mobility Optimization 391 -- 12.2 Summary of Contributions 393 -- 12.3 Future Work 394 -- A RDF Schema for Application Layer Discovery 395 -- A.1 Schema Primitives 395 -- B Definitions of Mobility-Related Terms 399 -- References 409 -- Index 425.

Restricted to subscribers or individual electronic text purchasers.

"In this book, the authors show how an optimized system of mobility management can improve the quality of service in existing forms of mobile communication"-- Provided by publisher.

Also available in print.

Mode of access: World Wide Web

Description based on PDF viewed 12/22/2015.

There are no comments for this item.

Log in to your account to post a comment.