Normal view MARC view ISBD view

Solid oxide fuel cells : from electrolyte-based to electrolyte-free devices / edited by Bin Zhu, Rizwan Raza, Liangdong Fan, Chunwen Sun.

Contributor(s): Zhu, Bin | Raza, Rizwan | Fan, Liangdong | Sun, Chunwen.
Material type: materialTypeLabelBookPublisher: Weinheim : Wiley-VCH, 2020Description: 1 online resource (488 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9783527812790; 3527812792; 9783527812783; 3527812784.Subject(s): Solid oxide fuel cells | Solid oxide fuel cellsGenre/Form: Electronic books.Additional physical formats: Print version:: Solid Oxide Fuel Cells : From Electrolyte-Based to Electrolyte-Free Devices.DDC classification: 621.31/2429 Online resources: Wiley Online Library
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Solid Oxide Fuel Cell with Ionic Conducting Electrolyte -- Chapter 1 Introduction -- 1.1 An Introduction to the Principles of Fuel Cells -- 1.2 Materials and Technologies -- 1.3 New Electrolyte Developments on LTSOFC -- 1.4 Beyond the State of the Art: The Electrolyte-Free Fuel Cell (EFFC) -- 1.4.1 Fundamental Issues -- 1.5 Beyond the SOFC -- References -- Chapter 2 Solid-State Electrolytes for SOFC -- 2.1 Introduction -- 2.2 Single-Phase SOFC Electrolytes -- 2.2.1 Oxygen Ionic Conducting Electrolyte
2.2.1.1 Stabilized Zirconia -- 2.2.1.2 Doped Ceria -- 2.2.1.3 SrO- and MgO-Doped Lanthanum Gallates (LSGM) -- 2.2.2 Proton-Conducting Electrolyte and Mixed Ionic Conducting Electrolyte -- 2.2.3 Alternative New Electrolytes and Research Interests -- 2.3 Ion Conduction/Transportation in Electrolytes -- 2.4 Composite Electrolytes -- 2.4.1 Oxide-Oxide Electrolyte -- 2.4.2 Oxide-Carbonate Composite -- 2.4.2.1 Materials Fabrication -- 2.4.2.2 Performance and Stability Optimization -- 2.4.3 Other Oxide-Salt Composite Electrolytes -- 2.4.4 Ionic Conduction Mechanism Studies of Ceria-Carbonate Composite
2.5 NANOCOFC and Material Design Principle -- 2.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Cathodes for Solid Oxide Fuel Cell -- 3.1 Introduction -- 3.2 Overview of Cathode Reaction Mechanism -- 3.3 Development of Cathode Materials -- 3.3.1 Perovskite Cathode Materials -- 3.3.1.1 Mn-Based Perovskite Cathodes -- 3.3.1.2 Co-Based Perovskite Cathodes -- 3.3.1.3 Fe-Based Perovskite Cathodes -- 3.3.1.4 Ni-Based Perovskite Cathodes -- 3.3.2 Double Perovskite Cathode Materials -- 3.4 Microstructure Optimization of Cathode Materials -- 3.4.1 Nanostructured Cathodes
3.4.2 Composite Cathodes -- 3.5 Summary -- References -- Chapter 4 Anodes for Solid Oxide Fuel Cell -- 4.1 Introduction -- 4.2 Overview of Anode Reaction Mechanism -- 4.2.1 Basic Operating Principles of a SOFC -- 4.2.1.1 The Anode Three-Phase Boundary -- 4.3 Development of Anode Materials -- 4.3.1 Ni-YSZ Cermet Anode Materials -- 4.3.2 Alternative Anode Materials -- 4.3.2.1 Fluorite Anode Materials -- 4.3.2.2 Perovskite Anode Materials -- 4.3.3 Sulfur-Tolerant Anode Materials -- 4.4 Development of Kinetics, Reaction Mechanism, and Model of the Anode -- 4.5 Summary and Outlook -- Acknowledgments
    average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Solid Oxide Fuel Cell with Ionic Conducting Electrolyte -- Chapter 1 Introduction -- 1.1 An Introduction to the Principles of Fuel Cells -- 1.2 Materials and Technologies -- 1.3 New Electrolyte Developments on LTSOFC -- 1.4 Beyond the State of the Art: The Electrolyte-Free Fuel Cell (EFFC) -- 1.4.1 Fundamental Issues -- 1.5 Beyond the SOFC -- References -- Chapter 2 Solid-State Electrolytes for SOFC -- 2.1 Introduction -- 2.2 Single-Phase SOFC Electrolytes -- 2.2.1 Oxygen Ionic Conducting Electrolyte

2.2.1.1 Stabilized Zirconia -- 2.2.1.2 Doped Ceria -- 2.2.1.3 SrO- and MgO-Doped Lanthanum Gallates (LSGM) -- 2.2.2 Proton-Conducting Electrolyte and Mixed Ionic Conducting Electrolyte -- 2.2.3 Alternative New Electrolytes and Research Interests -- 2.3 Ion Conduction/Transportation in Electrolytes -- 2.4 Composite Electrolytes -- 2.4.1 Oxide-Oxide Electrolyte -- 2.4.2 Oxide-Carbonate Composite -- 2.4.2.1 Materials Fabrication -- 2.4.2.2 Performance and Stability Optimization -- 2.4.3 Other Oxide-Salt Composite Electrolytes -- 2.4.4 Ionic Conduction Mechanism Studies of Ceria-Carbonate Composite

2.5 NANOCOFC and Material Design Principle -- 2.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Cathodes for Solid Oxide Fuel Cell -- 3.1 Introduction -- 3.2 Overview of Cathode Reaction Mechanism -- 3.3 Development of Cathode Materials -- 3.3.1 Perovskite Cathode Materials -- 3.3.1.1 Mn-Based Perovskite Cathodes -- 3.3.1.2 Co-Based Perovskite Cathodes -- 3.3.1.3 Fe-Based Perovskite Cathodes -- 3.3.1.4 Ni-Based Perovskite Cathodes -- 3.3.2 Double Perovskite Cathode Materials -- 3.4 Microstructure Optimization of Cathode Materials -- 3.4.1 Nanostructured Cathodes

3.4.2 Composite Cathodes -- 3.5 Summary -- References -- Chapter 4 Anodes for Solid Oxide Fuel Cell -- 4.1 Introduction -- 4.2 Overview of Anode Reaction Mechanism -- 4.2.1 Basic Operating Principles of a SOFC -- 4.2.1.1 The Anode Three-Phase Boundary -- 4.3 Development of Anode Materials -- 4.3.1 Ni-YSZ Cermet Anode Materials -- 4.3.2 Alternative Anode Materials -- 4.3.2.1 Fluorite Anode Materials -- 4.3.2.2 Perovskite Anode Materials -- 4.3.3 Sulfur-Tolerant Anode Materials -- 4.4 Development of Kinetics, Reaction Mechanism, and Model of the Anode -- 4.5 Summary and Outlook -- Acknowledgments

References-Chapter 5 Design and Development of SOFC Stacks-5.1 Introduction-5.2 Change of Cell Output Performance Under 2D Interface Contact-5.2.1 Design of 2D Interface Contact Mode-5.2.2 Variations of Cell Output Performance Under 2D Contact Mode-5.2.3 2D Interface Structure Improvements and Enhancement of Cell Output Performance-5.2.4 Contributions of 3D Contact in 2D Interface Contact-5.2.5 Mechanism of Performance Enhancement After the Transition from 2D to 3D Interface

5.3 Control Design of Transition from 2D to 3D Interface Contact and Their Quantitative Contribution Differentiation

Includes bibliographical references and index.

There are no comments for this item.

Log in to your account to post a comment.