Normal view MARC view ISBD view

Conjugated polymers : properties, processing, and applications / edited by John R. Reynolds, Barry C. Thompson, Terje A. Skotheim,

Contributor(s): Reynolds, John R, 1956- [editor.] | Thompson, Barry C [editor.] | Skotheim, Terje A, 1949- [editor.].
Material type: materialTypeLabelBookSeries: Publisher: Boca Raton, FL : CRC Press, [2019]Edition: Fourth edition.Description: 1 online resource : illustrations.Content type: text Media type: computer Carrier type: online resourceISBN: 9780429190520; 0429190522; 9780429539121; 0429539126; 9781315159294; 1315159295; 9780429524424; 0429524420.Subject(s): Conducting polymers | Organic conductors | TECHNOLOGY & ENGINEERING / Engineering (General) | TECHNOLOGY & ENGINEERING / Reference | TECHNOLOGY / Engineering / Chemical & Biochemical | TECHNOLOGY / Material Science | TECHNOLOGY / Textiles & PolymersDDC classification: 620.1/92 Online resources: Taylor & Francis | OCLC metadata license agreement
Contents:
Cover; Half Title; Title Page; Copyright Page; Table of Contents; Editors; Contributors; 1: Conjugated Polymer- Based OFET Devices; Mark Nikolka and Henning Sirringhaus; 1.1 Introduction; 1.2 State of OFET Techn​ology​/Appl​icati​ons/ C​ommer​ciali​zatio​n Efforts; 1.3 Recent Developments in Polymer OFET Materials -- From Crystalline Polythiophenes to Donor-Acceptor Polymers; 1.4 Charge Transport in Polymer OFETs; 1.5 Role of Disorder; 1.6 Charge Carrier Mobility and Artefacts; 1.7 Stability of OFETs; 1.8 Outlook; References
2: Electrical Doping of Organic Semiconductors with Molecular Oxidants and ReductantsStephen Barlow, Seth R. Marder, Xin Lin, Fengyu Zhang, and Antoine Kahn; 2.1 Introduction; 2.2 Basics of Doping in Organic Materials; 2.2.1 Comparison to Doping of Inorganic Materials; 2.2.2 Effects of Doping; 2.2.2.1 Enhancement of Conductivity; 2.2.2.2 Lowering of Injection Barriers; 2.3 Criteria for Dopant Choice; 2.4 Survey of Dopants; 2.4.1 p-Dopants; 2.4.1.1 Inorganic p-Dopants; 2.4.1.2 Organic and Metal-Organic p-Dopants; 2.4.2 n-Dopants; 2.4.2.1 One-Electron Reductants; 2.4.2.2 Air-Stable n-Dopants
2.5 Device Examples2.5.1 OLEDs; 2.5.2 OFETs; 2.5.3 OPVs; 2.6 Summary; Acknowledgments; References; 3: Electric Transport Properties in PEDOT Thin Films; Nara Kim, Ioannis Petsagkourakis, Shangzhi Chen, Magnus Berggren, Xavier Crispin, Magnus P. Jonsson, and Igor Zozoulenko; 3.1 Introduction; 3.2 Chemistry of PEDOT; 3.2.1 Chemical vs. Electrochemical Polymerization of PEDOT:X; 3.2.2 Chemical Water Dispersion: PEDOT:PSS; 3.2.3 PEDOT:Biopolymer Dispersion Polymerization; 3.2.4 Tuning the Oxidation/Doping Level Chemically vs. Electrochemically
3.3 Electronic Structure of PEDOT: From a Single Chain to a Thin Film3.3.1 Nature of Charge Carriers and Electronic Structure of PEDOT Chains; 3.3.2 Density of States of PEDOT: From a Single Chain to a Thin Film; 3.3.3 Band Gap and Optical Transitions in PEDOT; 3.4 Morphology of PEDOT; 3.4.1 Brief Review of Experimental Data for PEDOT:X and PEDOT:PSS (GIWAXS, TEM, AFM); 3.4.2 Morphology of PEDOT: A Theoretical Perspective; 3.4.2.1 Molecular Dynamics Simulation of the Morphology; 3.4.2.2 Effect of Counter-Ions at High Oxidation Levels; 3.4.2.3 Effect of Substrates; 3.5 Electrical Conductivity
3.5.1 Basic Thermodynamics of Thermoelectrical Processes3.5.2 Temperature Dependence; 3.5.3 Secondary Doping; 3.5.4 Acid-Base Effect; 3.6 Optical Conductivity; 3.6.1 Basic Definitions and Relations; 3.6.2 Methodologies for Measuring the Dielectric Function; 3.6.2.1 Optical Parameters from Transmittance and Reflectance Measurements; 3.6.2.2 Terahertz Time-Domain Spectroscopy (THz-TDS); 3.6.2.3 Variable Angle Spectroscopic Ellipsometry (VASE); 3.6.3 Optical Conductivity and Permittivity of PEDOT; 3.6.3.1 Anisotropy, Interfacial Layers, and Substrate Effects
Summary: This book covers properties, processing, and applications of conducting polymers. It discusses properties and characterization, including photophysics and transport. It then moves to processing and morphology of conducting polymers, covering such topics as printing, thermal processing, morphology evolution, conducting polymer composites, thin films
    average rating: 0.0 (0 votes)
No physical items for this record

This book covers properties, processing, and applications of conducting polymers. It discusses properties and characterization, including photophysics and transport. It then moves to processing and morphology of conducting polymers, covering such topics as printing, thermal processing, morphology evolution, conducting polymer composites, thin films

Cover; Half Title; Title Page; Copyright Page; Table of Contents; Editors; Contributors; 1: Conjugated Polymer- Based OFET Devices; Mark Nikolka and Henning Sirringhaus; 1.1 Introduction; 1.2 State of OFET Techn​ology​/Appl​icati​ons/ C​ommer​ciali​zatio​n Efforts; 1.3 Recent Developments in Polymer OFET Materials -- From Crystalline Polythiophenes to Donor-Acceptor Polymers; 1.4 Charge Transport in Polymer OFETs; 1.5 Role of Disorder; 1.6 Charge Carrier Mobility and Artefacts; 1.7 Stability of OFETs; 1.8 Outlook; References

2: Electrical Doping of Organic Semiconductors with Molecular Oxidants and ReductantsStephen Barlow, Seth R. Marder, Xin Lin, Fengyu Zhang, and Antoine Kahn; 2.1 Introduction; 2.2 Basics of Doping in Organic Materials; 2.2.1 Comparison to Doping of Inorganic Materials; 2.2.2 Effects of Doping; 2.2.2.1 Enhancement of Conductivity; 2.2.2.2 Lowering of Injection Barriers; 2.3 Criteria for Dopant Choice; 2.4 Survey of Dopants; 2.4.1 p-Dopants; 2.4.1.1 Inorganic p-Dopants; 2.4.1.2 Organic and Metal-Organic p-Dopants; 2.4.2 n-Dopants; 2.4.2.1 One-Electron Reductants; 2.4.2.2 Air-Stable n-Dopants

2.5 Device Examples2.5.1 OLEDs; 2.5.2 OFETs; 2.5.3 OPVs; 2.6 Summary; Acknowledgments; References; 3: Electric Transport Properties in PEDOT Thin Films; Nara Kim, Ioannis Petsagkourakis, Shangzhi Chen, Magnus Berggren, Xavier Crispin, Magnus P. Jonsson, and Igor Zozoulenko; 3.1 Introduction; 3.2 Chemistry of PEDOT; 3.2.1 Chemical vs. Electrochemical Polymerization of PEDOT:X; 3.2.2 Chemical Water Dispersion: PEDOT:PSS; 3.2.3 PEDOT:Biopolymer Dispersion Polymerization; 3.2.4 Tuning the Oxidation/Doping Level Chemically vs. Electrochemically

3.3 Electronic Structure of PEDOT: From a Single Chain to a Thin Film3.3.1 Nature of Charge Carriers and Electronic Structure of PEDOT Chains; 3.3.2 Density of States of PEDOT: From a Single Chain to a Thin Film; 3.3.3 Band Gap and Optical Transitions in PEDOT; 3.4 Morphology of PEDOT; 3.4.1 Brief Review of Experimental Data for PEDOT:X and PEDOT:PSS (GIWAXS, TEM, AFM); 3.4.2 Morphology of PEDOT: A Theoretical Perspective; 3.4.2.1 Molecular Dynamics Simulation of the Morphology; 3.4.2.2 Effect of Counter-Ions at High Oxidation Levels; 3.4.2.3 Effect of Substrates; 3.5 Electrical Conductivity

3.5.1 Basic Thermodynamics of Thermoelectrical Processes3.5.2 Temperature Dependence; 3.5.3 Secondary Doping; 3.5.4 Acid-Base Effect; 3.6 Optical Conductivity; 3.6.1 Basic Definitions and Relations; 3.6.2 Methodologies for Measuring the Dielectric Function; 3.6.2.1 Optical Parameters from Transmittance and Reflectance Measurements; 3.6.2.2 Terahertz Time-Domain Spectroscopy (THz-TDS); 3.6.2.3 Variable Angle Spectroscopic Ellipsometry (VASE); 3.6.3 Optical Conductivity and Permittivity of PEDOT; 3.6.3.1 Anisotropy, Interfacial Layers, and Substrate Effects

OCLC-licensed vendor bibliographic record.

There are no comments for this item.

Log in to your account to post a comment.