Normal view MARC view ISBD view

Dynamics and control of electric transmission and microgrids / Professor K. R Padiyar, Professor Anil M Kulkarni.

By: Padiyar, K. R [author.].
Contributor(s): Kulkarni, Anil M [author.] | IEEE Xplore (Online Service) [distributor.] | Wiley [publisher.].
Material type: materialTypeLabelBookPublisher: Hoboken, New Jersey : John Wiley & Sons, Inc., [2018]Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2018]Edition: First edition.Description: 1 PDF (504 pages).Content type: text Media type: electronic Carrier type: online resourceISBN: 9781119173410.Subject(s): Electric power systems -- Control | Electric power transmission | Microgrids (Smart power grids)Genre/Form: Electronic books.DDC classification: 621.319 Online resources: Abstract with links to resource Also available in print.
Contents:
Preface xiii -- Acknowledgements xv -- 1 Introduction 1 -- 1.1 Present Status of Grid Operation 1 -- 1.1.1 General 1 -- 1.1.2 HVDC Transmission 4 -- 1.1.3 Reliability of Electricity Supply 4 -- 1.2 Overview of System Dynamics and Control 4 -- 1.2.1 Power System Stability 4 -- 1.2.2 Mathematical Preliminaries 6 -- Stability of Equilibrium Point 6 -- Steady-State Behavior 8 -- 1.2.3 Power System Security 8 -- 1.3 Monitoring and Enhancing System Security 10 -- 1.4 Emergency Control and System Protection 11 -- 1.5 Recent Developments 12 -- 1.5.1 Power System Protection 12 -- 1.5.2 Development of Smart Grids 13 -- 1.5.3 Microgrids 14 -- 1.5.4 Role of System Dynamics and Control 14 -- 1.6 Outline of Chapters 14 -- References 17 -- 2 Grid Characteristics and Operation 19 -- 2.1 Description of Electric Grids 19 -- 2.2 Detailed Modeling of Three-Phase AC Lines 21 -- 2.3 Circuit Models of Symmetric Networks 22 -- 2.4 Network Equations in DQo and 훼훽o Components 23 -- 2.4.1 Transformation to Park (dqo) Components 24 -- 2.4.2 Steady-State Equations 25 -- 2.4.3 D-Q Transformation using 훼-훽 Variables 26 -- 2.5 Frequency and Power Control 28 -- 2.5.1 Tie-Line Bias Frequency Control 31 -- 2.6 Dynamic Characteristics of AC Grids 33 -- 2.6.1 Grid Response to Frequency Modulation 33 -- 2.6.2 Grid Response to Injection of Reactive Current 35 -- 2.7 Control of Power Flow in AC Grids 38 -- 2.7.1 Power Transfer Capability of a Line 38 -- 2.7.2 Power Flow in a Line connected to an AC Transmission Grid 41 -- 2.8 Analysis of Electromagnetic Transients 42 -- 2.8.1 Modeling of Lumped Parameter Components 42 -- 2.8.2 Modeling of a Single-Phase Line 43 -- 2.8.3 Approximation of Series Resistance of Line 44 -- 2.8.4 Modeling of Lossless Multiphase Line 45 -- 2.8.5 Modeling of Multiphase Networks with Lumped Parameters 46 -- 2.9 Transmission Expansion Planning 47 -- 2.10 Reliability in Distribution Systems 48 -- 2.11 Reliable Power Flows in a Transmission Network 48.
2.12 Reliability Analysis of Transmission Networks 50 -- 2.A Analysis of a Distributed Parameter Single-Phase Line in Steady State 51 -- 2.A.1 Expressions for a Lossless Line 53 -- 2.A.2 Performance of a Symmetrical Line 54 -- 2.B Computation of Electrical Torque 55 -- References 57 -- 3 Modeling and Simulation of Synchronous Generator Dynamics 59 -- 3.1 Introduction 59 -- 3.2 Detailed Model of a Synchronous Machine 59 -- 3.2.1 Flux Linkage Equations 60 -- 3.2.2 Voltage equations 61 -- 3.3 Park’s Transformation 62 -- 3.4 Per-Unit Quantities 69 -- 3.5 Equivalent Circuits of a Synchronous Machine 72 -- 3.6 Synchronous Machine Models for Stability Analysis 76 -- 3.6.1 Application of Model (2.1) 80 -- 3.6.2 Application of Model (1.1) 80 -- 3.6.3 Modeling of Saturation 82 -- 3.7 An Exact Circuit Model of a Synchronous Machine for Electromagnetic Transient Analysis 82 -- 3.7.1 Derivation of the Circuit Model 83 -- 3.7.2 Transformation of the Circuit Model 87 -- 3.7.3 Modeling of a Synchronous Generator in the Simulation of Electromagnetic Transients 91 -- 3.7.4 Treatment of Dynamic Saliency 92 -- 3.8 Excitation and Prime Mover Controllers 93 -- 3.8.1 Excitation Systems 93 -- 3.8.2 Modeling of Prime-Mover Control Systems 98 -- 3.9 Transient Instability due to Loss of Synchronism 101 -- 3.10 Extended Equal Area Criterion 103 -- 3.11 Dynamics of a Synchronous Generator 104 -- Network Equations 104 -- Calculation of Initial Conditions 106 -- System Simulation 108 -- 3.A Derivation of Electrical Torque 110 -- References 112 -- 4 Modeling and Simulation of Wind Power Generators 115 -- 4.1 Introduction 115 -- 4.2 Power Extraction byWind Turbines 116 -- 4.2.1 Wind Speed Characteristics 117 -- 4.2.2 Control of Power Extraction 118 -- 4.3 Generator and Power Electronic Configurations 120 -- 4.3.1 Wind Farm Configurations 122 -- 4.4 Modeling of the Rotating System 122 -- 4.5 Induction Generator Model 124 -- 4.5.1 Rotor Speed Instability 127 -- 4.5.2 Modeling Issues 130 -- 4.5.3 Frequency Conversion Using Voltage Source Converters 132.
4.6 Control of Type IIIWTG System 133 -- 4.6.1 Rotor-Side Converter Control 133 -- 4.6.2 Grid-Side Converter Control 136 -- 4.6.3 Overall Control Scheme for a Type III WTG system 137 -- 4.6.4 Simplified Modeling of the Controllers for Slow Transient Studies 141 -- 4.7 Control of Type IVWTG System 142 -- References 143 -- 5 Modeling and Analysis of FACTS and HVDC Controllers 145 -- 5.1 Introduction 145 -- 5.2 FACTS Controllers 146 -- 5.2.1 Description 146 -- 5.2.2 A General Equivalent Circuit for FACTS Controllers 147 -- 5.2.3 Benefits of the Application of FACTS Controllers 148 -- 5.2.4 Application of FACTS Controllers in Distribution Systems 150 -- 5.3 Reactive Power Control 150 -- Control Characteristics 153 -- 5.4 Thyristor-Controlled Series Capacitor 153 -- 5.4.1 Basic Concepts of Controlled Series Compensation 155 -- 5.4.2 Operation of a TCSC 157 -- 5.4.3 Analysis of a TCSC 158 -- 5.4.4 Computation of the TCSC Reactance (XTCSC) 159 -- 5.4.5 Control of the TCSC 161 -- 5.5 Static Synchronous Compensator 166 -- 5.5.1 General 166 -- 5.5.2 Two-Level (Graetz Bridge) Voltage Source Converter 168 -- 5.5.3 Pulse0020Width Modulation 169 -- 5.5.4 Analysis of a Voltage Source Converter 171 -- 5.5.5 Control of VSC 175 -- 5.6 HVDC Power Transmission 177 -- 5.6.1 Application of DC Transmission 178 -- 5.6.2 Description of HVDC Transmission Systems 178 -- 5.6.3 Analysis of a Line Commutated Converter 180 -- 5.6.4 Introduction of VSC-HVDC Transmission 186 -- 5.A Case Study of a VSC-HVDC Link 190 -- References 193 -- 6 Damping of Power Swings 195 -- 6.1 Introduction 195 -- 6.2 Origin of Power Swings 196 -- 6.3 SMIB Model with Field Flux Dynamics and AVR 199 -- 6.3.1 Small-Signal Model and Eigenvalue Analysis 201 -- 6.4 Damping and Synchronizing Torque Analysis 205 -- 6.5 Analysis of Multi-Machine Systems 210 -- 6.5.1 Electro-Mechanical Modes in a Multi-Machine System 210 -- 6.5.2 Analysis with Detailed Models 216 -- 6.6 Principles of Damping Controller Design 225 -- 6.6.1 Actuator Location and Choice of Feedback Signals 229.
6.6.2 Components of a PSDC 230 -- 6.6.3 PSDCs based on Generator Excitation Systems: Power System Stabilizers 231 -- 6.6.4 Adverse Torsional Interactions with the Speed/Slip Signal 237 -- 6.6.5 Damping of Swings using Grid-Connected Power Electronic Systems 237 -- 6.7 Concluding Remarks 241 -- 6.A Eigenvalues of the Stiffness matrix K of Section 6.5.1 242 -- 6.B Three-Machine Data 244 -- References 244 -- 7 Analysis and Control of Loss of Synchronism 247 -- 7.1 Introduction 247 -- 7.2 Effect of LoS 247 -- 7.3 Understanding the LoS Phenomenon 249 -- 7.4 Criteria for Assessment of Stability 251 -- 7.5 Power System Modeling and Simulation for Analysis of LoS 252 -- 7.5.1 Effect of System Model 254 -- 7.5.2 Effect of Changing Operating Conditions 255 -- 7.6 Loss of Synchronism in Multi-Machine Systems 256 -- 7.6.1 Effect of Disturbance Location on Mode of Separation: 258 -- 7.6.2 Effect of the Load Model 258 -- 7.6.3 Effect of Series Compensation in a Critical Line 260 -- 7.6.4 Effect of a Change in the Pre-fault Generation Schedule 261 -- 7.6.5 Voltage Phase Angular Differences across Critical Lines/Apparent Impedance seen by Relays 261 -- 7.7 Measures to Avoid LoS 263 -- 7.7.1 System Planning and Design 263 -- 7.7.2 Preventive Control During Actual Operation 264 -- 7.7.3 Emergency Control 264 -- 7.8 Assessment and Control of LoS Using Energy Functions 265 -- 7.8.1 Energy Function Method Applied to an SMIB System 266 -- 7.8.2 Energy Function Method Applied to Multi-Machine Systems/Detailed Models 270 -- 7.8.3 Evaluation of Critical Energy in a Multi-Machine System 274 -- 7.9 Generation Rescheduling Using Energy Margin Sensitivities 274 -- 7.9.1 Case Study: Generation Rescheduling 276 -- 7.A Simulation Methods for Transient Stability Studies 276 -- 7.A.1 Simultaneous Implicit Method 277 -- 7.A.2 Partitioned Explicit Method 277 -- 7.B Ten-Machine System Data 279 -- References 281 -- 8 Analysis of Voltage Stability and Control 283 -- 8.1 Introduction 283 -- 8.2 Definitions of Voltage Stability 284.
8.3 Comparison of Angle and Voltage Stability 286 -- 8.3.1 Analysis of the SMLB System 287 -- 8.4 Mathematical Preliminaries 290 -- 8.5 Factors Affecting Instability and Collapse 292 -- 8.5.1 Induction Motor Loads 292 -- 8.5.2 HVDC Converter 293 -- 8.5.3 Overexcitation Limiters 294 -- 8.5.4 OLTC Transformers 295 -- 8.5.5 A Nonlinear Dynamic Load Model 296 -- 8.6 Dynamics of Load Restoration 296 -- 8.7 Analysis of Voltage Stability and Collapse 298 -- 8.7.1 Simulation 298 -- 8.7.2 Small Signal (Linear) Analysis 298 -- 8.8 Integrated Analysis of Voltage and Angle Stability 301 -- 8.9 Analysis of Small Signal Voltage Instability Decoupled from Angle Instability 303 -- 8.9.1 Decoupling of Angle and Voltage Variables 304 -- 8.9.2 Incremental RCFN 305 -- 8.9.3 Nonlinear Reactive Loads 306 -- 8.9.4 Generator Model 306 -- Discussion 307 -- 8.10 Control of Voltage Instability 308 -- References 308 -- 9 Wide-AreaMeasurements and Applications 311 -- 9.1 Introduction 311 -- 9.2 Technology and Standards 311 -- 9.2.1 Synchrophasor Definition 313 -- 9.2.2 Reporting Rates 314 -- 9.2.3 Latency and Data Loss 315 -- 9.3 Modeling ofWAMS in Angular Stability Programs 315 -- 9.4 Online Monitoring of Power Swing Damping 316 -- 9.4.1 Modal Estimation based on Ringdown Analysis 317 -- 9.4.2 Modal Estimation based on Probing Signals 319 -- 9.4.3 Modal Estimation based on Ambient Data Analysis 323 -- 9.5 WAMS Applications in Power Swing Damping Controllers 327 -- 9.6 WAMS Applications in Emergency Control 330 -- 9.7 Generator Parameter Estimation 335 -- 9.8 Electro-MechanicalWave Propagation and Other Observations in Large Grids 335 -- References 338 -- 10 Analysis of Subsynchronous Resonance 341 -- 10.1 Introduction 341 -- 10.2 Analysis of Electrical Network Dynamics 342 -- 10.2.1 Equations in DQo Variables 344 -- 10.2.2 Interfacing a DQ Network Model with a Generator Model 346 -- 10.3 Torsional Dynamics of a Generator-Turbine System 353 -- 10.3.1 Damping of Torsional Oscillations 359 -- 10.3.2 Sensitivity of the Torsional Modes to the External Electrical System 360.
10.4 Generator-Turbine and Network Interactions: Subsynchronous Resonance 362 -- 10.4.1 Torsional Modes in Multi-Generator Systems 368 -- 10.4.2 Adverse Interactions with Turbine-Generator Controllers 371 -- 10.4.3 Detection of SSR/Torsional Monitoring 373 -- 10.4.4 Countermeasures for Subsynchronous Resonance and Subsynchronous Torsional Interactions 374 -- 10.4.5 Case Study: TCSC-Based SSDC 377 -- 10.5 Time-InvariantModels of Grid-Connected Power Electronic Systems 378 -- 10.5.1 Discrete-Time DynamicModels using the PoincaréMapping Technique 380 -- 10.5.2 Dynamic Phasor-Based Modeling 380 -- 10.5.3 Numerical Derivation of PES Models: A Frequency Scanning Approach 383 -- 10.A Transfer Function Representation of the Network 385 -- References 386 -- 11 Solar Power Generation and Energy Storage 391 -- 11.1 Introduction 391 -- 11.2 Solar Thermal Power Generation 392 -- 11.3 Solar PV Power Generation 392 -- 11.3.1 Solar Module I-V Characteristics 393 -- 11.3.2 Solar PV Connections and Power Extraction Strategies 393 -- 11.3.3 Power Electronic Converters for Solar PV Applications 395 -- 11.3.4 Maximum Power Point Tracking Algorithms 397 -- 11.3.5 Control of Grid-Connected Solar PV Plants 398 -- 11.3.6 Low-Voltage Ride Through and Voltage Support Capability 400 -- 11.4 Energy Storage 403 -- 11.4.1 Attributes of Energy Storage Devices 404 -- 11.4.2 Energy Storage Technologies 404 -- 11.4.3 Mapping to Applications 406 -- 11.4.4 Battery Modeling 410 -- References 412 -- 12 Microgrids: Operation and Control 415 -- 12.1 Introduction 415 -- 12.2 Microgrid Concept 416 -- 12.2.1 Definition of a Microgrid 416 -- 12.2.2 Control System 417 -- 12.3 Microgrid Architecture 419 -- 12.4 Distribution Automation and Control 420 -- 12.5 Operation and Control of Microgrids 421 -- 12.5.1 DER Units 421 -- 12.5.2 Microgrid Loads 423 -- 12.5.3 DER Controls 423 -- 12.5.4 Control Strategies under Grid-Connected Operation 425 -- 12.5.5 Control Strategy for an Islanded Microgrid 427 -- 12.6 Energy Management System 428.
12.6.1 Microgrid Supervisory Control 429 -- 12.6.2 Decentralized Microgrid Control based on a Multi-Agent System 430 -- 12.6.3 IndustrialMicrogrid Controllers 431 -- 12.7 Adaptive Network Protection in Microgrids 432 -- 12.7.1 Protection Issues 433 -- 12.7.2 Adaptive Protection 434 -- 12.8 Dynamic Modeling of Distributed Energy Resources 435 -- 12.8.1 Photovoltaic Array with MPP Tracker 435 -- 12.8.2 Fuel Cells 437 -- 12.8.3 Natural Gas Generator Set 438 -- 12.8.4 Fixed-SpeedWind Turbine Driving SCIG 439 -- 12.9 Some Operating Problems in Microgirds 442 -- 12.10 Integration of DG and DS in a Microgrid 444 -- 12.11 DC Microgrids 444 -- 12.12 Future Trends and Conclusions 445 -- 12.A A Three-Phase Model of an Induction Machine 448 -- References 452 -- A Equal Area Criterion 455 -- An Interesting Network Analogy 456 -- References 458 -- B Grid Synchronization and Current Regulation 459 -- Choice of Reference Frames 459 -- References 462 -- C Fryze-Buchbolz-Depenbrock Method for Load Compensation 463 -- C.1 Introduction 463 -- C.2 Description of FBDTheory 463 -- C.3 Power Theory in Multiconductor Circuits 466 -- Virtual Star Point 466 -- Collective Quantities 467 -- C.4 Examples 469 -- C.5 Load Characterization over a Period 470 -- C.6 Compensation of Non-Active Currents 471 -- Discussion 472 -- References 472 -- D Symmetrical Components and Per-Unit Representation 473 -- D.1 Symmetrical Component Representation of Three-Phase Systems 473 -- D.2 Per-Unit Representation 476 -- References 478 -- Index 479.
Summary: "Highlights the role of transmission and distribution grids that ensure the reliability and quality of electric power supply. - Original coverage of Analysis and Control of Loss of Synchronism including, Extended Equal Area Criterion (EEAC). - Timely and unique coverage of On-Line Detection of Loss of Synchronism, Wide Area Measurements and Applications, Wide-Area Feedback Control Systems for Power Swing Damping and Microgrids-Operation and Control. Market description (Please include secondary markets) Primary: Senior undergraduate and Ph.D. students on courses relating to power system dynamics and control/ electrical power industry professionals working on the planning, design and development of controls for enhancing grid performance. Secondary: Researchers in R&D laboratories connected with modernization and systems improvement of electricity supply systems"--Provided by publisher.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Preface xiii -- Acknowledgements xv -- 1 Introduction 1 -- 1.1 Present Status of Grid Operation 1 -- 1.1.1 General 1 -- 1.1.2 HVDC Transmission 4 -- 1.1.3 Reliability of Electricity Supply 4 -- 1.2 Overview of System Dynamics and Control 4 -- 1.2.1 Power System Stability 4 -- 1.2.2 Mathematical Preliminaries 6 -- Stability of Equilibrium Point 6 -- Steady-State Behavior 8 -- 1.2.3 Power System Security 8 -- 1.3 Monitoring and Enhancing System Security 10 -- 1.4 Emergency Control and System Protection 11 -- 1.5 Recent Developments 12 -- 1.5.1 Power System Protection 12 -- 1.5.2 Development of Smart Grids 13 -- 1.5.3 Microgrids 14 -- 1.5.4 Role of System Dynamics and Control 14 -- 1.6 Outline of Chapters 14 -- References 17 -- 2 Grid Characteristics and Operation 19 -- 2.1 Description of Electric Grids 19 -- 2.2 Detailed Modeling of Three-Phase AC Lines 21 -- 2.3 Circuit Models of Symmetric Networks 22 -- 2.4 Network Equations in DQo and 훼훽o Components 23 -- 2.4.1 Transformation to Park (dqo) Components 24 -- 2.4.2 Steady-State Equations 25 -- 2.4.3 D-Q Transformation using 훼-훽 Variables 26 -- 2.5 Frequency and Power Control 28 -- 2.5.1 Tie-Line Bias Frequency Control 31 -- 2.6 Dynamic Characteristics of AC Grids 33 -- 2.6.1 Grid Response to Frequency Modulation 33 -- 2.6.2 Grid Response to Injection of Reactive Current 35 -- 2.7 Control of Power Flow in AC Grids 38 -- 2.7.1 Power Transfer Capability of a Line 38 -- 2.7.2 Power Flow in a Line connected to an AC Transmission Grid 41 -- 2.8 Analysis of Electromagnetic Transients 42 -- 2.8.1 Modeling of Lumped Parameter Components 42 -- 2.8.2 Modeling of a Single-Phase Line 43 -- 2.8.3 Approximation of Series Resistance of Line 44 -- 2.8.4 Modeling of Lossless Multiphase Line 45 -- 2.8.5 Modeling of Multiphase Networks with Lumped Parameters 46 -- 2.9 Transmission Expansion Planning 47 -- 2.10 Reliability in Distribution Systems 48 -- 2.11 Reliable Power Flows in a Transmission Network 48.

2.12 Reliability Analysis of Transmission Networks 50 -- 2.A Analysis of a Distributed Parameter Single-Phase Line in Steady State 51 -- 2.A.1 Expressions for a Lossless Line 53 -- 2.A.2 Performance of a Symmetrical Line 54 -- 2.B Computation of Electrical Torque 55 -- References 57 -- 3 Modeling and Simulation of Synchronous Generator Dynamics 59 -- 3.1 Introduction 59 -- 3.2 Detailed Model of a Synchronous Machine 59 -- 3.2.1 Flux Linkage Equations 60 -- 3.2.2 Voltage equations 61 -- 3.3 Park’s Transformation 62 -- 3.4 Per-Unit Quantities 69 -- 3.5 Equivalent Circuits of a Synchronous Machine 72 -- 3.6 Synchronous Machine Models for Stability Analysis 76 -- 3.6.1 Application of Model (2.1) 80 -- 3.6.2 Application of Model (1.1) 80 -- 3.6.3 Modeling of Saturation 82 -- 3.7 An Exact Circuit Model of a Synchronous Machine for Electromagnetic Transient Analysis 82 -- 3.7.1 Derivation of the Circuit Model 83 -- 3.7.2 Transformation of the Circuit Model 87 -- 3.7.3 Modeling of a Synchronous Generator in the Simulation of Electromagnetic Transients 91 -- 3.7.4 Treatment of Dynamic Saliency 92 -- 3.8 Excitation and Prime Mover Controllers 93 -- 3.8.1 Excitation Systems 93 -- 3.8.2 Modeling of Prime-Mover Control Systems 98 -- 3.9 Transient Instability due to Loss of Synchronism 101 -- 3.10 Extended Equal Area Criterion 103 -- 3.11 Dynamics of a Synchronous Generator 104 -- Network Equations 104 -- Calculation of Initial Conditions 106 -- System Simulation 108 -- 3.A Derivation of Electrical Torque 110 -- References 112 -- 4 Modeling and Simulation of Wind Power Generators 115 -- 4.1 Introduction 115 -- 4.2 Power Extraction byWind Turbines 116 -- 4.2.1 Wind Speed Characteristics 117 -- 4.2.2 Control of Power Extraction 118 -- 4.3 Generator and Power Electronic Configurations 120 -- 4.3.1 Wind Farm Configurations 122 -- 4.4 Modeling of the Rotating System 122 -- 4.5 Induction Generator Model 124 -- 4.5.1 Rotor Speed Instability 127 -- 4.5.2 Modeling Issues 130 -- 4.5.3 Frequency Conversion Using Voltage Source Converters 132.

4.6 Control of Type IIIWTG System 133 -- 4.6.1 Rotor-Side Converter Control 133 -- 4.6.2 Grid-Side Converter Control 136 -- 4.6.3 Overall Control Scheme for a Type III WTG system 137 -- 4.6.4 Simplified Modeling of the Controllers for Slow Transient Studies 141 -- 4.7 Control of Type IVWTG System 142 -- References 143 -- 5 Modeling and Analysis of FACTS and HVDC Controllers 145 -- 5.1 Introduction 145 -- 5.2 FACTS Controllers 146 -- 5.2.1 Description 146 -- 5.2.2 A General Equivalent Circuit for FACTS Controllers 147 -- 5.2.3 Benefits of the Application of FACTS Controllers 148 -- 5.2.4 Application of FACTS Controllers in Distribution Systems 150 -- 5.3 Reactive Power Control 150 -- Control Characteristics 153 -- 5.4 Thyristor-Controlled Series Capacitor 153 -- 5.4.1 Basic Concepts of Controlled Series Compensation 155 -- 5.4.2 Operation of a TCSC 157 -- 5.4.3 Analysis of a TCSC 158 -- 5.4.4 Computation of the TCSC Reactance (XTCSC) 159 -- 5.4.5 Control of the TCSC 161 -- 5.5 Static Synchronous Compensator 166 -- 5.5.1 General 166 -- 5.5.2 Two-Level (Graetz Bridge) Voltage Source Converter 168 -- 5.5.3 Pulse0020Width Modulation 169 -- 5.5.4 Analysis of a Voltage Source Converter 171 -- 5.5.5 Control of VSC 175 -- 5.6 HVDC Power Transmission 177 -- 5.6.1 Application of DC Transmission 178 -- 5.6.2 Description of HVDC Transmission Systems 178 -- 5.6.3 Analysis of a Line Commutated Converter 180 -- 5.6.4 Introduction of VSC-HVDC Transmission 186 -- 5.A Case Study of a VSC-HVDC Link 190 -- References 193 -- 6 Damping of Power Swings 195 -- 6.1 Introduction 195 -- 6.2 Origin of Power Swings 196 -- 6.3 SMIB Model with Field Flux Dynamics and AVR 199 -- 6.3.1 Small-Signal Model and Eigenvalue Analysis 201 -- 6.4 Damping and Synchronizing Torque Analysis 205 -- 6.5 Analysis of Multi-Machine Systems 210 -- 6.5.1 Electro-Mechanical Modes in a Multi-Machine System 210 -- 6.5.2 Analysis with Detailed Models 216 -- 6.6 Principles of Damping Controller Design 225 -- 6.6.1 Actuator Location and Choice of Feedback Signals 229.

6.6.2 Components of a PSDC 230 -- 6.6.3 PSDCs based on Generator Excitation Systems: Power System Stabilizers 231 -- 6.6.4 Adverse Torsional Interactions with the Speed/Slip Signal 237 -- 6.6.5 Damping of Swings using Grid-Connected Power Electronic Systems 237 -- 6.7 Concluding Remarks 241 -- 6.A Eigenvalues of the Stiffness matrix K of Section 6.5.1 242 -- 6.B Three-Machine Data 244 -- References 244 -- 7 Analysis and Control of Loss of Synchronism 247 -- 7.1 Introduction 247 -- 7.2 Effect of LoS 247 -- 7.3 Understanding the LoS Phenomenon 249 -- 7.4 Criteria for Assessment of Stability 251 -- 7.5 Power System Modeling and Simulation for Analysis of LoS 252 -- 7.5.1 Effect of System Model 254 -- 7.5.2 Effect of Changing Operating Conditions 255 -- 7.6 Loss of Synchronism in Multi-Machine Systems 256 -- 7.6.1 Effect of Disturbance Location on Mode of Separation: 258 -- 7.6.2 Effect of the Load Model 258 -- 7.6.3 Effect of Series Compensation in a Critical Line 260 -- 7.6.4 Effect of a Change in the Pre-fault Generation Schedule 261 -- 7.6.5 Voltage Phase Angular Differences across Critical Lines/Apparent Impedance seen by Relays 261 -- 7.7 Measures to Avoid LoS 263 -- 7.7.1 System Planning and Design 263 -- 7.7.2 Preventive Control During Actual Operation 264 -- 7.7.3 Emergency Control 264 -- 7.8 Assessment and Control of LoS Using Energy Functions 265 -- 7.8.1 Energy Function Method Applied to an SMIB System 266 -- 7.8.2 Energy Function Method Applied to Multi-Machine Systems/Detailed Models 270 -- 7.8.3 Evaluation of Critical Energy in a Multi-Machine System 274 -- 7.9 Generation Rescheduling Using Energy Margin Sensitivities 274 -- 7.9.1 Case Study: Generation Rescheduling 276 -- 7.A Simulation Methods for Transient Stability Studies 276 -- 7.A.1 Simultaneous Implicit Method 277 -- 7.A.2 Partitioned Explicit Method 277 -- 7.B Ten-Machine System Data 279 -- References 281 -- 8 Analysis of Voltage Stability and Control 283 -- 8.1 Introduction 283 -- 8.2 Definitions of Voltage Stability 284.

8.3 Comparison of Angle and Voltage Stability 286 -- 8.3.1 Analysis of the SMLB System 287 -- 8.4 Mathematical Preliminaries 290 -- 8.5 Factors Affecting Instability and Collapse 292 -- 8.5.1 Induction Motor Loads 292 -- 8.5.2 HVDC Converter 293 -- 8.5.3 Overexcitation Limiters 294 -- 8.5.4 OLTC Transformers 295 -- 8.5.5 A Nonlinear Dynamic Load Model 296 -- 8.6 Dynamics of Load Restoration 296 -- 8.7 Analysis of Voltage Stability and Collapse 298 -- 8.7.1 Simulation 298 -- 8.7.2 Small Signal (Linear) Analysis 298 -- 8.8 Integrated Analysis of Voltage and Angle Stability 301 -- 8.9 Analysis of Small Signal Voltage Instability Decoupled from Angle Instability 303 -- 8.9.1 Decoupling of Angle and Voltage Variables 304 -- 8.9.2 Incremental RCFN 305 -- 8.9.3 Nonlinear Reactive Loads 306 -- 8.9.4 Generator Model 306 -- Discussion 307 -- 8.10 Control of Voltage Instability 308 -- References 308 -- 9 Wide-AreaMeasurements and Applications 311 -- 9.1 Introduction 311 -- 9.2 Technology and Standards 311 -- 9.2.1 Synchrophasor Definition 313 -- 9.2.2 Reporting Rates 314 -- 9.2.3 Latency and Data Loss 315 -- 9.3 Modeling ofWAMS in Angular Stability Programs 315 -- 9.4 Online Monitoring of Power Swing Damping 316 -- 9.4.1 Modal Estimation based on Ringdown Analysis 317 -- 9.4.2 Modal Estimation based on Probing Signals 319 -- 9.4.3 Modal Estimation based on Ambient Data Analysis 323 -- 9.5 WAMS Applications in Power Swing Damping Controllers 327 -- 9.6 WAMS Applications in Emergency Control 330 -- 9.7 Generator Parameter Estimation 335 -- 9.8 Electro-MechanicalWave Propagation and Other Observations in Large Grids 335 -- References 338 -- 10 Analysis of Subsynchronous Resonance 341 -- 10.1 Introduction 341 -- 10.2 Analysis of Electrical Network Dynamics 342 -- 10.2.1 Equations in DQo Variables 344 -- 10.2.2 Interfacing a DQ Network Model with a Generator Model 346 -- 10.3 Torsional Dynamics of a Generator-Turbine System 353 -- 10.3.1 Damping of Torsional Oscillations 359 -- 10.3.2 Sensitivity of the Torsional Modes to the External Electrical System 360.

10.4 Generator-Turbine and Network Interactions: Subsynchronous Resonance 362 -- 10.4.1 Torsional Modes in Multi-Generator Systems 368 -- 10.4.2 Adverse Interactions with Turbine-Generator Controllers 371 -- 10.4.3 Detection of SSR/Torsional Monitoring 373 -- 10.4.4 Countermeasures for Subsynchronous Resonance and Subsynchronous Torsional Interactions 374 -- 10.4.5 Case Study: TCSC-Based SSDC 377 -- 10.5 Time-InvariantModels of Grid-Connected Power Electronic Systems 378 -- 10.5.1 Discrete-Time DynamicModels using the PoincaréMapping Technique 380 -- 10.5.2 Dynamic Phasor-Based Modeling 380 -- 10.5.3 Numerical Derivation of PES Models: A Frequency Scanning Approach 383 -- 10.A Transfer Function Representation of the Network 385 -- References 386 -- 11 Solar Power Generation and Energy Storage 391 -- 11.1 Introduction 391 -- 11.2 Solar Thermal Power Generation 392 -- 11.3 Solar PV Power Generation 392 -- 11.3.1 Solar Module I-V Characteristics 393 -- 11.3.2 Solar PV Connections and Power Extraction Strategies 393 -- 11.3.3 Power Electronic Converters for Solar PV Applications 395 -- 11.3.4 Maximum Power Point Tracking Algorithms 397 -- 11.3.5 Control of Grid-Connected Solar PV Plants 398 -- 11.3.6 Low-Voltage Ride Through and Voltage Support Capability 400 -- 11.4 Energy Storage 403 -- 11.4.1 Attributes of Energy Storage Devices 404 -- 11.4.2 Energy Storage Technologies 404 -- 11.4.3 Mapping to Applications 406 -- 11.4.4 Battery Modeling 410 -- References 412 -- 12 Microgrids: Operation and Control 415 -- 12.1 Introduction 415 -- 12.2 Microgrid Concept 416 -- 12.2.1 Definition of a Microgrid 416 -- 12.2.2 Control System 417 -- 12.3 Microgrid Architecture 419 -- 12.4 Distribution Automation and Control 420 -- 12.5 Operation and Control of Microgrids 421 -- 12.5.1 DER Units 421 -- 12.5.2 Microgrid Loads 423 -- 12.5.3 DER Controls 423 -- 12.5.4 Control Strategies under Grid-Connected Operation 425 -- 12.5.5 Control Strategy for an Islanded Microgrid 427 -- 12.6 Energy Management System 428.

12.6.1 Microgrid Supervisory Control 429 -- 12.6.2 Decentralized Microgrid Control based on a Multi-Agent System 430 -- 12.6.3 IndustrialMicrogrid Controllers 431 -- 12.7 Adaptive Network Protection in Microgrids 432 -- 12.7.1 Protection Issues 433 -- 12.7.2 Adaptive Protection 434 -- 12.8 Dynamic Modeling of Distributed Energy Resources 435 -- 12.8.1 Photovoltaic Array with MPP Tracker 435 -- 12.8.2 Fuel Cells 437 -- 12.8.3 Natural Gas Generator Set 438 -- 12.8.4 Fixed-SpeedWind Turbine Driving SCIG 439 -- 12.9 Some Operating Problems in Microgirds 442 -- 12.10 Integration of DG and DS in a Microgrid 444 -- 12.11 DC Microgrids 444 -- 12.12 Future Trends and Conclusions 445 -- 12.A A Three-Phase Model of an Induction Machine 448 -- References 452 -- A Equal Area Criterion 455 -- An Interesting Network Analogy 456 -- References 458 -- B Grid Synchronization and Current Regulation 459 -- Choice of Reference Frames 459 -- References 462 -- C Fryze-Buchbolz-Depenbrock Method for Load Compensation 463 -- C.1 Introduction 463 -- C.2 Description of FBDTheory 463 -- C.3 Power Theory in Multiconductor Circuits 466 -- Virtual Star Point 466 -- Collective Quantities 467 -- C.4 Examples 469 -- C.5 Load Characterization over a Period 470 -- C.6 Compensation of Non-Active Currents 471 -- Discussion 472 -- References 472 -- D Symmetrical Components and Per-Unit Representation 473 -- D.1 Symmetrical Component Representation of Three-Phase Systems 473 -- D.2 Per-Unit Representation 476 -- References 478 -- Index 479.

Restricted to subscribers or individual electronic text purchasers.

"Highlights the role of transmission and distribution grids that ensure the reliability and quality of electric power supply. - Original coverage of Analysis and Control of Loss of Synchronism including, Extended Equal Area Criterion (EEAC). - Timely and unique coverage of On-Line Detection of Loss of Synchronism, Wide Area Measurements and Applications, Wide-Area Feedback Control Systems for Power Swing Damping and Microgrids-Operation and Control. Market description (Please include secondary markets) Primary: Senior undergraduate and Ph.D. students on courses relating to power system dynamics and control/ electrical power industry professionals working on the planning, design and development of controls for enhancing grid performance. Secondary: Researchers in R&D laboratories connected with modernization and systems improvement of electricity supply systems"--Provided by publisher.

Also available in print.

Mode of access: World Wide Web

Description based on PDF viewed 03/19/2019.

There are no comments for this item.

Log in to your account to post a comment.