Normal view MARC view ISBD view

Smart sensors for environmental and medical applications / Hamida Hallil and Hadi Heidari.

Contributor(s): Hallil, Hamida, 1981- [editor.] | Heidari, Hadi [editor.] | IEEE Xplore (Online Service) [distributor.] | Wiley [publisher.].
Material type: materialTypeLabelBookPublisher: Hoboken, New Jersey : John Wiley & Sons, Inc., [2020]Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2020]Description: 1 PDF.Content type: text Media type: electronic Carrier type: online resourceISBN: 9781119587354.Subject(s): Biosensors | Medical instruments and apparatus | Biosensing TechniquesGenre/Form: Electronic books.Additional physical formats: Print version:: Smart sensors for environmental and medical applicationsDDC classification: 610.28/4 Online resources: Abstract with links to resource Also available in print.
Contents:
List of Contributors xi -- Preface xiii -- About the Editors xvii -- 1 Introduction 1 /Hamida Hallil and Hadi Heidari -- 1.1 Overview 1 -- 1.2 Sensors: History and Terminology 2 -- 1.2.1 Definitions and General Characteristics 3 -- 1.2.2 Influence Quantities 5 -- 1.3 Smart Sensors for Environmental and Medical Applications 6 -- 1.4 Outline 8 -- Reference 9 -- 2 Field Effect Transistor Technologies for Biological and Chemical Sensors 11 /Anne-Claire Sala �un, France Le Bihan, and Laurent Pichon -- 2.1 Introduction 11 -- 2.2 FET Gas Sensors 12 -- 2.2.1 Materials 12 -- 2.2.1.1 Inorganic Semiconductors 12 -- 2.2.1.2 Semiconductor Polymers 12 -- 2.2.1.3 Nanostructured Materials 13 -- 2.2.2 FET as Gas Sensors 13 -- 2.2.2.1 Pioneering FET Gas Sensors 13 -- 2.2.2.2 OFET Gas Sensors 13 -- 2.2.2.3 Nanowires-Based FET Gas Sensors 14 -- 2.3 Ion-Sensitive Field Effect Transistors Based Devices 18 -- 2.3.1 Classical ISFET 18 -- 2.3.2 Other Technologies 19 -- 2.3.2.1 EGFET: Extended Gate FET 20 -- 2.3.2.2 SGFET: Suspended Gate FFETs 20 -- 2.3.2.3 DGFET: Dual-Gate FETs 20 -- 2.3.2.4 Water Gating FET or Electrolyte Gated FET 21 -- 2.3.2.5 Other FETs 23 -- 2.3.3 BioFETs 23 -- 2.3.3.1 General Considerations 23 -- 2.3.3.2 DNA BioFET 23 -- 2.3.3.3 Protein BioFET 25 -- 2.3.3.4 Cells 25 -- 2.4 Nano-Field Effect Transistors 25 -- 2.4.1 Fabrication of Nano-Devices 25 -- 2.4.1.1 Silicon Nano-Devices 25 -- 2.4.1.2 Carbon Nanotubes Nano-Devices 28 -- 2.4.2 Detection of Biochemical Particles by Nanostructures-Based FET 28 -- 2.4.2.1 SiNW pH Sensor 29 -- 2.4.2.2 DNA Detection Using SiNW-Based Sensor 30 -- 2.4.2.3 Protein Detection 32 -- 2.4.2.4 Detection of Bacteria and Viruses 33 -- References 34 -- 3 Mammalian Cell-Based Electrochemical Sensor for Label-Free Monitoring of Analytes 43 /Md. Abdul Kafi, Mst. Khudishta Aktar, and Hadi Heidari -- 3.1 Introduction 43 -- 3.2 State-of-the-Art Cell Chip Design and Fabrication 45 -- 3.3 Substrate Functionalization Strategies at the Cell���oElectrode Interface 48.
3.4 Electrochemical Characterization of Cellular Redox 49 -- 3.5 Application of Cell-Based Sensor 51 -- 3.6 Prospects and Challenges of Cell-Based Sensor 54 -- 3.7 Conclusion 56 -- References 56 -- 4 Electronic Tongues 61 /Flavio M. Shimizu, Maria Luisa Braunger, Antonio Riul, Jr., and Osvaldo N. Oliveira, Jr -- 4.1 Introduction 61 -- 4.2 General Applications of E-tongues 63 -- 4.3 Bioelectronic Tongues (bETs) 65 -- 4.4 New Design of Electrodes or Measurement Systems 66 -- 4.5 Challenges and Outlook 73 -- Acknowledgments 73 -- References 74 -- 5 Monitoring of Food Spoilage Using Polydiacetylene��� and Liposome���Based Sensors 81 /Max Weston, Federico Mazur, and Rona Chandrawati -- 5.1 Introduction 81 -- 5.2 Polydiacetylene for Visual Detection of Food Spoilage 82 -- 5.2.1 Contaminant Detection 83 -- 5.2.2 Freshness Indicators 85 -- 5.2.3 Challenges, Trends, and Industrial Applicability in the Food Industry 87 -- 5.3 Liposomes 88 -- 5.3.1 Pathogen Detection 88 -- 5.3.1.1 Escherichia coli 88 -- 5.3.1.2 Salmonella spp. 90 -- 5.3.1.3 Other Bacterium 90 -- 5.3.1.4 Viruses, Pesticides, and Toxins 91 -- 5.3.2 Stability of Liposome���Based Sensors 93 -- 5.3.3 Industrial Applicability of Liposomes 93 -- 5.4 Conclusions 94 -- References 94 -- 6 Chemical Sensors Based on Metal Oxides 103 /K. S. Shalini Devi, Aadhav Anantharamakrishnan, Uma Maheswari Krishnan, and Jatinder Yakhmi -- 6.1 Introduction 103 -- 6.2 Classes of MOx-Based Chemical Sensors 104 -- 6.3 Synthesis of MOx Structures 104 -- 6.4 Mechanism of Sensing by MOx 105 -- 6.5 Factors Influencing Sensing Performance 106 -- 6.6 Applications of MOx-Based Chemical Sensors 109 -- 6.6.1 MOx Sensors for Environmental Monitoring 109 -- 6.6.2 MOx Sensors in Clinical Diagnosis 112 -- 6.6.3 MOx Sensors in Pharmaceutical Analysis 113 -- 6.6.4 MOx-Based Sensors in Food Analysis 116 -- 6.6.5 MOx Sensors in Agriculture 117 -- 6.6.6 MOx Sensors for Hazard Analysis 117 -- 6.6.7 Flexible Sensors Based on MOx 118 -- 6.6.8 MOx-Based Lab-on-a-Chip Sensors 118.
6.7 Concluding Remarks 119 -- Acknowledgment 119 -- References 120 -- 7 Metal Oxide Gas Sensor Electronic Interfaces 129 /Zeinab Hijazi, Daniele D. Caviglia, and Maurizio Valle -- 7.1 General Introduction 129 -- 7.1.1 Gas Sensing System 129 -- 7.1.2 Gas Sensing Technologies 130 -- 7.2 MOX Gas Sensors 131 -- 7.2.1 Principle of Operation 131 -- 7.2.2 Assessment of Available MOX-Based Gas Sensors 132 -- 7.3 System Requirements and Literature Review 134 -- 7.3.1 System Requirements 134 -- 7.3.2 Wide Range Resistance Interface Review 136 -- 7.4 Resistance to Time/Frequency Conversion Architecture 137 -- 7.4.1 Electronic Circuit Description 137 -- 7.4.2 Specifications for Each Building Block to Preserve High Linearity 138 -- 7.4.2.1 Resistance to Current Conversion (R-to-I) 138 -- 7.4.2.2 Switches 141 -- 7.4.2.3 Current to Voltage Conversion (I-to-V) 141 -- 7.4.2.4 Voltage to Time/Period (V-to-T) Conversion 141 -- 7.5 Power Consumption 141 -- 7.5.1 Power Consumption of MOX Gas Sensor 141 -- 7.5.2 Low Power Operating Mode 142 -- 7.5.3 Power Consumption at Circuit Level 142 -- 7.6 Conclusion 143 -- References 143 -- 8 Smart and Intelligent E-nose for Sensitive and Selective Chemical Sensing Applications 149 /Saakshi Dhanekar -- 8.1 Introduction 149 -- 8.1.1 The Human Olfactory System 150 -- 8.1.2 The Artificial Olfactory System 150 -- 8.1.2.1 Sensor Array 151 -- 8.1.2.2 Multivariate Data Analysis 152 -- 8.1.2.3 Pattern Recognition Methods 153 -- 8.2 What is an Electronic Nose? 154 -- 8.3 Applications of E-nose 155 -- 8.3.1 Key Applications of E-nose 155 -- 8.3.2 E-nose for Chemical Sensing 155 -- 8.4 Types of E-nose 157 -- 8.5 Examples of E-nose 158 -- 8.6 Improvements and Challenges 165 -- 8.7 Conclusion 165 -- References 166 -- 9 Odor Sensing System 173 /Takamichi Nakamoto and Muis Muthadi -- 9.1 Introduction 173 -- 9.2 Odor Biosensor 174 -- 9.3 Prediction of Odor Impression Using Deep Learning 176 -- 9.4 Establishment of Odor���Source Localization Strategy Using Computational Fluid Dynamics 181.
9.4.1 Background of Odor���Source Localization 181 -- 9.4.2 Sensor Model with Response Delay 182 -- 9.4.3 Simulation of Testing Environment Using CFD 183 -- 9.4.4 Simulation of Biologically Inspired Odor���Source Localization 185 -- 9.4.4.1 Odor Plume Tracking Strategy 185 -- 9.4.4.2 Result 186 -- 9.4.5 Summary of Odor Source Localization Strategy 187 -- 9.5 Conclusion 188 -- Acknowledgments 189 -- References 189 -- 10 Microwave Chemical Sensors 193 /Hamida Hallil and Corinne Dejous -- 10.1 Interests of Electromagnetic Transducer Gas Sensors at Microwave Frequencies 193 -- 10.2 Operating Principle 193 -- 10.2.1 Electromagnetic Transducers 193 -- 10.2.2 The Case of Microwave Transducers 195 -- 10.3 Theory of Microwave Transducers: Design, Methodology, and Approach 196 -- 10.4 Microwave Structure���Based Chemical Sensor 200 -- 10.4.1 Manufacturing Techniques 200 -- 10.4.2 Chemical Microwave Sensors 200 -- 10.4.3 Wireless Interrogation Schemes 204 -- 10.5 Multivariate Data Analysis and Machine Learning for Targeted Species Identification 207 -- 10.6 Conclusion and Prospects 209 -- Acknowledgments 210 -- References 210 -- Index 217.
Summary: "This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to the sensor validation and through their modeling and simulation and manufacturing technology processes, which have been developed so far. It addresses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, etc. The book incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections. In this way readers are educated on the advantages and disadvantages of the relevant transducers depending on the design, transduction mode and final applications. The book covers all major aspects of the primary constituents of the field of smart chemical sensors including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis and suitable application"-- Provided by publisher.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

List of Contributors xi -- Preface xiii -- About the Editors xvii -- 1 Introduction 1 /Hamida Hallil and Hadi Heidari -- 1.1 Overview 1 -- 1.2 Sensors: History and Terminology 2 -- 1.2.1 Definitions and General Characteristics 3 -- 1.2.2 Influence Quantities 5 -- 1.3 Smart Sensors for Environmental and Medical Applications 6 -- 1.4 Outline 8 -- Reference 9 -- 2 Field Effect Transistor Technologies for Biological and Chemical Sensors 11 /Anne-Claire Sala �un, France Le Bihan, and Laurent Pichon -- 2.1 Introduction 11 -- 2.2 FET Gas Sensors 12 -- 2.2.1 Materials 12 -- 2.2.1.1 Inorganic Semiconductors 12 -- 2.2.1.2 Semiconductor Polymers 12 -- 2.2.1.3 Nanostructured Materials 13 -- 2.2.2 FET as Gas Sensors 13 -- 2.2.2.1 Pioneering FET Gas Sensors 13 -- 2.2.2.2 OFET Gas Sensors 13 -- 2.2.2.3 Nanowires-Based FET Gas Sensors 14 -- 2.3 Ion-Sensitive Field Effect Transistors Based Devices 18 -- 2.3.1 Classical ISFET 18 -- 2.3.2 Other Technologies 19 -- 2.3.2.1 EGFET: Extended Gate FET 20 -- 2.3.2.2 SGFET: Suspended Gate FFETs 20 -- 2.3.2.3 DGFET: Dual-Gate FETs 20 -- 2.3.2.4 Water Gating FET or Electrolyte Gated FET 21 -- 2.3.2.5 Other FETs 23 -- 2.3.3 BioFETs 23 -- 2.3.3.1 General Considerations 23 -- 2.3.3.2 DNA BioFET 23 -- 2.3.3.3 Protein BioFET 25 -- 2.3.3.4 Cells 25 -- 2.4 Nano-Field Effect Transistors 25 -- 2.4.1 Fabrication of Nano-Devices 25 -- 2.4.1.1 Silicon Nano-Devices 25 -- 2.4.1.2 Carbon Nanotubes Nano-Devices 28 -- 2.4.2 Detection of Biochemical Particles by Nanostructures-Based FET 28 -- 2.4.2.1 SiNW pH Sensor 29 -- 2.4.2.2 DNA Detection Using SiNW-Based Sensor 30 -- 2.4.2.3 Protein Detection 32 -- 2.4.2.4 Detection of Bacteria and Viruses 33 -- References 34 -- 3 Mammalian Cell-Based Electrochemical Sensor for Label-Free Monitoring of Analytes 43 /Md. Abdul Kafi, Mst. Khudishta Aktar, and Hadi Heidari -- 3.1 Introduction 43 -- 3.2 State-of-the-Art Cell Chip Design and Fabrication 45 -- 3.3 Substrate Functionalization Strategies at the Cell���oElectrode Interface 48.

3.4 Electrochemical Characterization of Cellular Redox 49 -- 3.5 Application of Cell-Based Sensor 51 -- 3.6 Prospects and Challenges of Cell-Based Sensor 54 -- 3.7 Conclusion 56 -- References 56 -- 4 Electronic Tongues 61 /Flavio M. Shimizu, Maria Luisa Braunger, Antonio Riul, Jr., and Osvaldo N. Oliveira, Jr -- 4.1 Introduction 61 -- 4.2 General Applications of E-tongues 63 -- 4.3 Bioelectronic Tongues (bETs) 65 -- 4.4 New Design of Electrodes or Measurement Systems 66 -- 4.5 Challenges and Outlook 73 -- Acknowledgments 73 -- References 74 -- 5 Monitoring of Food Spoilage Using Polydiacetylene��� and Liposome���Based Sensors 81 /Max Weston, Federico Mazur, and Rona Chandrawati -- 5.1 Introduction 81 -- 5.2 Polydiacetylene for Visual Detection of Food Spoilage 82 -- 5.2.1 Contaminant Detection 83 -- 5.2.2 Freshness Indicators 85 -- 5.2.3 Challenges, Trends, and Industrial Applicability in the Food Industry 87 -- 5.3 Liposomes 88 -- 5.3.1 Pathogen Detection 88 -- 5.3.1.1 Escherichia coli 88 -- 5.3.1.2 Salmonella spp. 90 -- 5.3.1.3 Other Bacterium 90 -- 5.3.1.4 Viruses, Pesticides, and Toxins 91 -- 5.3.2 Stability of Liposome���Based Sensors 93 -- 5.3.3 Industrial Applicability of Liposomes 93 -- 5.4 Conclusions 94 -- References 94 -- 6 Chemical Sensors Based on Metal Oxides 103 /K. S. Shalini Devi, Aadhav Anantharamakrishnan, Uma Maheswari Krishnan, and Jatinder Yakhmi -- 6.1 Introduction 103 -- 6.2 Classes of MOx-Based Chemical Sensors 104 -- 6.3 Synthesis of MOx Structures 104 -- 6.4 Mechanism of Sensing by MOx 105 -- 6.5 Factors Influencing Sensing Performance 106 -- 6.6 Applications of MOx-Based Chemical Sensors 109 -- 6.6.1 MOx Sensors for Environmental Monitoring 109 -- 6.6.2 MOx Sensors in Clinical Diagnosis 112 -- 6.6.3 MOx Sensors in Pharmaceutical Analysis 113 -- 6.6.4 MOx-Based Sensors in Food Analysis 116 -- 6.6.5 MOx Sensors in Agriculture 117 -- 6.6.6 MOx Sensors for Hazard Analysis 117 -- 6.6.7 Flexible Sensors Based on MOx 118 -- 6.6.8 MOx-Based Lab-on-a-Chip Sensors 118.

6.7 Concluding Remarks 119 -- Acknowledgment 119 -- References 120 -- 7 Metal Oxide Gas Sensor Electronic Interfaces 129 /Zeinab Hijazi, Daniele D. Caviglia, and Maurizio Valle -- 7.1 General Introduction 129 -- 7.1.1 Gas Sensing System 129 -- 7.1.2 Gas Sensing Technologies 130 -- 7.2 MOX Gas Sensors 131 -- 7.2.1 Principle of Operation 131 -- 7.2.2 Assessment of Available MOX-Based Gas Sensors 132 -- 7.3 System Requirements and Literature Review 134 -- 7.3.1 System Requirements 134 -- 7.3.2 Wide Range Resistance Interface Review 136 -- 7.4 Resistance to Time/Frequency Conversion Architecture 137 -- 7.4.1 Electronic Circuit Description 137 -- 7.4.2 Specifications for Each Building Block to Preserve High Linearity 138 -- 7.4.2.1 Resistance to Current Conversion (R-to-I) 138 -- 7.4.2.2 Switches 141 -- 7.4.2.3 Current to Voltage Conversion (I-to-V) 141 -- 7.4.2.4 Voltage to Time/Period (V-to-T) Conversion 141 -- 7.5 Power Consumption 141 -- 7.5.1 Power Consumption of MOX Gas Sensor 141 -- 7.5.2 Low Power Operating Mode 142 -- 7.5.3 Power Consumption at Circuit Level 142 -- 7.6 Conclusion 143 -- References 143 -- 8 Smart and Intelligent E-nose for Sensitive and Selective Chemical Sensing Applications 149 /Saakshi Dhanekar -- 8.1 Introduction 149 -- 8.1.1 The Human Olfactory System 150 -- 8.1.2 The Artificial Olfactory System 150 -- 8.1.2.1 Sensor Array 151 -- 8.1.2.2 Multivariate Data Analysis 152 -- 8.1.2.3 Pattern Recognition Methods 153 -- 8.2 What is an Electronic Nose? 154 -- 8.3 Applications of E-nose 155 -- 8.3.1 Key Applications of E-nose 155 -- 8.3.2 E-nose for Chemical Sensing 155 -- 8.4 Types of E-nose 157 -- 8.5 Examples of E-nose 158 -- 8.6 Improvements and Challenges 165 -- 8.7 Conclusion 165 -- References 166 -- 9 Odor Sensing System 173 /Takamichi Nakamoto and Muis Muthadi -- 9.1 Introduction 173 -- 9.2 Odor Biosensor 174 -- 9.3 Prediction of Odor Impression Using Deep Learning 176 -- 9.4 Establishment of Odor���Source Localization Strategy Using Computational Fluid Dynamics 181.

9.4.1 Background of Odor���Source Localization 181 -- 9.4.2 Sensor Model with Response Delay 182 -- 9.4.3 Simulation of Testing Environment Using CFD 183 -- 9.4.4 Simulation of Biologically Inspired Odor���Source Localization 185 -- 9.4.4.1 Odor Plume Tracking Strategy 185 -- 9.4.4.2 Result 186 -- 9.4.5 Summary of Odor Source Localization Strategy 187 -- 9.5 Conclusion 188 -- Acknowledgments 189 -- References 189 -- 10 Microwave Chemical Sensors 193 /Hamida Hallil and Corinne Dejous -- 10.1 Interests of Electromagnetic Transducer Gas Sensors at Microwave Frequencies 193 -- 10.2 Operating Principle 193 -- 10.2.1 Electromagnetic Transducers 193 -- 10.2.2 The Case of Microwave Transducers 195 -- 10.3 Theory of Microwave Transducers: Design, Methodology, and Approach 196 -- 10.4 Microwave Structure���Based Chemical Sensor 200 -- 10.4.1 Manufacturing Techniques 200 -- 10.4.2 Chemical Microwave Sensors 200 -- 10.4.3 Wireless Interrogation Schemes 204 -- 10.5 Multivariate Data Analysis and Machine Learning for Targeted Species Identification 207 -- 10.6 Conclusion and Prospects 209 -- Acknowledgments 210 -- References 210 -- Index 217.

Restricted to subscribers or individual electronic text purchasers.

"This book presents a comprehensive overview of chemical sensors, ranging from the choice of material to the sensor validation and through their modeling and simulation and manufacturing technology processes, which have been developed so far. It addresses the process of data collection by intelligent techniques such as deep learning, multivariate analysis, etc. The book incorporates different types of smart chemical sensors and discusses each under a common set of sub-sections. In this way readers are educated on the advantages and disadvantages of the relevant transducers depending on the design, transduction mode and final applications. The book covers all major aspects of the primary constituents of the field of smart chemical sensors including working principle and related theory, sensor materials, classification of respective transducer type, relevant fabrication processes, methods for data analysis and suitable application"-- Provided by publisher.

Also available in print.

Mode of access: World Wide Web

There are no comments for this item.

Log in to your account to post a comment.