Normal view MARC view ISBD view

Reliability Physics and Engineering [electronic resource] : Time-To-Failure Modeling / by J. W. McPherson.

By: McPherson, J. W [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Cham : Springer International Publishing : Imprint: Springer, 2019Edition: 3rd ed. 2019.Description: XVII, 463 p. 207 illus., 164 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319936833.Subject(s): Electronic circuits | Security systems | Electronic Circuits and Systems | Security Science and TechnologyAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Introduction -- Physics of Degradation -- Time Dependence of Materials and Device Degradation -- From Material/Device Degradation to Time-To-Failure -- Time-To-Failure Modeling -- Gaussian Statistics - An Overview -- Time-To-Failure Statistics -- Failure Rate Modeling -- Accelerated Degradation -- Acceleration Factor Modeling -- Ramp-To-Failure Testing -- Time-To-Failure Models for Selected Failure Mechanisms in Integrated Circuits -- Time-To-Failure Models for Selected Failure Mechanisms in Mechanical Engineering -- Conversion of Dynamical Stresses Into Effective Static Values -- Resonance and Resonance-Induced Degradation -- Increasing the Reliability of Device/Product Designs -- Screening -- Heat Generation and Dissipation -- Sampling Plans and Confidence Intervals -- .
In: Springer Nature eBookSummary: This third edition textbook provides the basics of reliability physics and engineering that are needed by electrical engineers, mechanical engineers, civil engineers, biomedical engineers, materials scientists, and applied physicists to help them to build better devices/products. The information contained within should help all fields of engineering to develop better methodologies for: more reliable product designs, more reliable materials selections, and more reliable manufacturing processes— all of which should help to improve product reliability. A mathematics level through differential equations is needed. Also, a familiarity with the use of excel spreadsheets is assumed. Any needed statistical training and tools are contained within the text. While device failure is a statistical process (thus making statistics important), the emphasis of this book is clearly on the physics of failure and developing the reliability engineering tools required for product improvements during device-design and device-fabrication phases. Provides a comprehensive textbook on reliability physics of semiconductors, from fundamentals to applications; Explains the fundamentals of reliability physics and engineering tools for building better products; Contains statistical training and tools within the text; Includes new chapters on Physics of Degradation, and Resonance and Resonance-Induced Degradation.
    average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Physics of Degradation -- Time Dependence of Materials and Device Degradation -- From Material/Device Degradation to Time-To-Failure -- Time-To-Failure Modeling -- Gaussian Statistics - An Overview -- Time-To-Failure Statistics -- Failure Rate Modeling -- Accelerated Degradation -- Acceleration Factor Modeling -- Ramp-To-Failure Testing -- Time-To-Failure Models for Selected Failure Mechanisms in Integrated Circuits -- Time-To-Failure Models for Selected Failure Mechanisms in Mechanical Engineering -- Conversion of Dynamical Stresses Into Effective Static Values -- Resonance and Resonance-Induced Degradation -- Increasing the Reliability of Device/Product Designs -- Screening -- Heat Generation and Dissipation -- Sampling Plans and Confidence Intervals -- .

This third edition textbook provides the basics of reliability physics and engineering that are needed by electrical engineers, mechanical engineers, civil engineers, biomedical engineers, materials scientists, and applied physicists to help them to build better devices/products. The information contained within should help all fields of engineering to develop better methodologies for: more reliable product designs, more reliable materials selections, and more reliable manufacturing processes— all of which should help to improve product reliability. A mathematics level through differential equations is needed. Also, a familiarity with the use of excel spreadsheets is assumed. Any needed statistical training and tools are contained within the text. While device failure is a statistical process (thus making statistics important), the emphasis of this book is clearly on the physics of failure and developing the reliability engineering tools required for product improvements during device-design and device-fabrication phases. Provides a comprehensive textbook on reliability physics of semiconductors, from fundamentals to applications; Explains the fundamentals of reliability physics and engineering tools for building better products; Contains statistical training and tools within the text; Includes new chapters on Physics of Degradation, and Resonance and Resonance-Induced Degradation.

There are no comments for this item.

Log in to your account to post a comment.