Normal view MARC view ISBD view

Efficient Design of Variation-Resilient Ultra-Low Energy Digital Processors [electronic resource] / by Hans Reyserhove, Wim Dehaene.

By: Reyserhove, Hans [author.].
Contributor(s): Dehaene, Wim [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Cham : Springer International Publishing : Imprint: Springer, 2019Edition: 1st ed. 2019.Description: XXIV, 209 p. 141 illus., 80 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783030124854.Subject(s): Electronic circuits | Signal processing | Electronics | Electronic Circuits and Systems | Signal, Speech and Image Processing | Electronics and Microelectronics, InstrumentationAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Chapter 1. Energy-Efficient Processors: Challenges and Solutions -- Chapter 2. Near-Threshold Operation: Technology, Building Blocks and Architecture -- Chapter 3. Efficient VLSI Design Flow -- Chapter 4. Ultra-Low Voltage Microcontrollers -- Chapter 5. Error Detection and Correction -- Chapter 6. Timing Error-Aware Microcontroller -- Chapter 7. Conclusion.
In: Springer Nature eBookSummary: This book enables readers to achieve ultra-low energy digital system performance. The author’s main focus is the energy consumption of microcontroller architectures in digital (sub)-systems. The book covers a broad range of topics extensively: from circuits through design strategy to system architectures. The result is a set of techniques and a context to realize minimum energy digital systems. Several prototype silicon implementations are discussed, which put the proposed techniques to the test. The achieved results demonstrate an extraordinary combination of variation-resilience, high speed performance and ultra-low energy. Presents a full bottom-up micro-electronics approach: circuit-level, design strategy and CAD automation, architecture optimization Motivates discussion with simulation results and/or measurements in an advanced nanometer CMOS process Compares traditional circuit/design/architecture techniques and state-of-the-art, setting the landscape of current best performance and how it can be improved.
    average rating: 0.0 (0 votes)
No physical items for this record

Chapter 1. Energy-Efficient Processors: Challenges and Solutions -- Chapter 2. Near-Threshold Operation: Technology, Building Blocks and Architecture -- Chapter 3. Efficient VLSI Design Flow -- Chapter 4. Ultra-Low Voltage Microcontrollers -- Chapter 5. Error Detection and Correction -- Chapter 6. Timing Error-Aware Microcontroller -- Chapter 7. Conclusion.

This book enables readers to achieve ultra-low energy digital system performance. The author’s main focus is the energy consumption of microcontroller architectures in digital (sub)-systems. The book covers a broad range of topics extensively: from circuits through design strategy to system architectures. The result is a set of techniques and a context to realize minimum energy digital systems. Several prototype silicon implementations are discussed, which put the proposed techniques to the test. The achieved results demonstrate an extraordinary combination of variation-resilience, high speed performance and ultra-low energy. Presents a full bottom-up micro-electronics approach: circuit-level, design strategy and CAD automation, architecture optimization Motivates discussion with simulation results and/or measurements in an advanced nanometer CMOS process Compares traditional circuit/design/architecture techniques and state-of-the-art, setting the landscape of current best performance and how it can be improved.

There are no comments for this item.

Log in to your account to post a comment.