Normal view MARC view ISBD view

Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips [electronic resource] : Design Automation, Testing, and Design-for-Testability / by Kai Hu, Krishnendu Chakrabarty, Tsung-Yi Ho.

By: Hu, Kai [author.].
Contributor(s): Chakrabarty, Krishnendu [author.] | Ho, Tsung-Yi [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Cham : Springer International Publishing : Imprint: Springer, 2017Edition: 1st ed. 2017.Description: XIII, 142 p. 64 illus., 55 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319562551.Subject(s): Electronic circuits | Biomedical engineering | Microprocessors | Computer architecture | Electronic Circuits and Systems | Biomedical Engineering and Bioengineering | Processor ArchitecturesAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Introduction -- Control-Layer Optimization -- Wash Optimization for Cross-Contamination Removal -- Fault Modeling, Testing, and Design-for Testability -- Techniques for Fault Diagnosis -- Conclusion and New Directions.
In: Springer Nature eBookSummary: This book provides a comprehensive overview of flow-based, microfluidic VLSI. The authors describe and solve in a comprehensive and holistic manner practical challenges such as control synthesis, wash optimization, design for testability, and diagnosis of modern flow-based microfluidic biochips. They introduce practical solutions, based on rigorous optimization and formal models. The technical contributions presented in this book will not only shorten the product development cycle, but also accelerate the adoption and further development of modern flow-based microfluidic biochips, by facilitating the full exploitation of design complexities that are possible with current fabrication techniques. Offers the first practical problem formulation for automated control-layer design in flow-based microfluidic biochips and provides a systematic approach for solving this problem; Introduces a wash-optimization method for cross-contamination removal; Presents a design-for-testability (DfT) technique that can achieve 100% fault coverage at the logic level, i.e., complete defect coverage for all valves and microchannels; Includes a method for fault diagnosis in flow-based microfluidic biochips, which detects leakage and blockage defects in both control and flow layers.
    average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Control-Layer Optimization -- Wash Optimization for Cross-Contamination Removal -- Fault Modeling, Testing, and Design-for Testability -- Techniques for Fault Diagnosis -- Conclusion and New Directions.

This book provides a comprehensive overview of flow-based, microfluidic VLSI. The authors describe and solve in a comprehensive and holistic manner practical challenges such as control synthesis, wash optimization, design for testability, and diagnosis of modern flow-based microfluidic biochips. They introduce practical solutions, based on rigorous optimization and formal models. The technical contributions presented in this book will not only shorten the product development cycle, but also accelerate the adoption and further development of modern flow-based microfluidic biochips, by facilitating the full exploitation of design complexities that are possible with current fabrication techniques. Offers the first practical problem formulation for automated control-layer design in flow-based microfluidic biochips and provides a systematic approach for solving this problem; Introduces a wash-optimization method for cross-contamination removal; Presents a design-for-testability (DfT) technique that can achieve 100% fault coverage at the logic level, i.e., complete defect coverage for all valves and microchannels; Includes a method for fault diagnosis in flow-based microfluidic biochips, which detects leakage and blockage defects in both control and flow layers.

There are no comments for this item.

Log in to your account to post a comment.