Normal view MARC view ISBD view

Fracture Mechanics [electronic resource] / by Nestor Perez.

By: Perez, Nestor [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Cham : Springer International Publishing : Imprint: Springer, 2017Edition: 2nd ed. 2017.Description: XIV, 418 p. 205 illus., 179 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319249995.Subject(s): Mechanics, Applied | Solids | Materials—Analysis | Solid Mechanics | Characterization and Analytical TechniqueAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 620.105 Online resources: Click here to access online
Contents:
Theory of Elasticity -- Introduction to Fracture Mechanics -- Linear-Elastic Fracture Mechanics -- Linear-Elastic Field Equations -- Crack Tip Plasticity -- The Energy Principle -- Elastic-Plastic Fracture Mechanics -- Mixed-Mode Fracture Mechanics -- Fatigue Crack Growth -- Fracture Toughness Correlations.-.
In: Springer Nature eBookSummary: The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understanding with theoretical concepts and detailed treatments of formula derivation; Presents analytical methods for deriving stress and strain functions related to fracture mechanics; Reinforces concepts and modeling techniques with example problems that support comprehension and application of a particular theory.
    average rating: 0.0 (0 votes)
No physical items for this record

Theory of Elasticity -- Introduction to Fracture Mechanics -- Linear-Elastic Fracture Mechanics -- Linear-Elastic Field Equations -- Crack Tip Plasticity -- The Energy Principle -- Elastic-Plastic Fracture Mechanics -- Mixed-Mode Fracture Mechanics -- Fatigue Crack Growth -- Fracture Toughness Correlations.-.

The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understanding with theoretical concepts and detailed treatments of formula derivation; Presents analytical methods for deriving stress and strain functions related to fracture mechanics; Reinforces concepts and modeling techniques with example problems that support comprehension and application of a particular theory.

There are no comments for this item.

Log in to your account to post a comment.