Normal view MARC view ISBD view

Nanomaterials for theranostics and tissue engineering : techniques, trends and applications / edited by Filippo Rossi and Alberto Rainer.

Contributor(s): Rossi, Filippo | Rainer, Alberto.
Material type: materialTypeLabelBookSeries: Micro & nano technologies: Publisher: Amsterdam : Elsevier, 2020Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128178393; 0128178396.Subject(s): Nanostructured materials | Nanomedicine | Tissue engineering | Nanostructures | Tissue Engineering | Nanomat�eriaux | G�enie tissulaire | Nanomedicine | Nanostructured materials | Tissue engineeringAdditional physical formats: Print version:: Nanomaterials for theranostics and tissue engineering.DDC classification: 620.1/15 Online resources: ScienceDirect
Contents:
Front Cover -- Nanomaterials for Theranostics and Tissue Engineering -- Copyright Page -- Contents -- List of contributors -- Introduction -- 1 Polymeric nanoparticles for controlled drug delivery -- 1.1 General concepts and synthetic strategies -- 1.2 Polymer nanoparticles for controlled drug delivery -- 1.2.1 Stimuli-responsive polymer nanoparticles -- 1.3 The long road from the bench to the clinic -- 1.4 Conclusions -- References -- 2 Extracellular vesicles in regenerative medicine -- 2.1 Introduction -- 2.2 Cell-based therapies -- 2.3 Tissue engineering -- 2.4 Cell-free therapies
2.4.1 Soluble factors -- 2.4.2 Biogenic and synthetic nanoparticles -- 2.5 Extracellular vesicles in a nutshell -- 2.5.1 Extracellular vesicle biological and physicochemical properties -- 2.5.2 Extracellular vesicle separation and characterization -- 2.5.3 Medical translation of extracellular vesicles -- 2.6 Regenerative properties of extracellular vesicles -- 2.6.1 Why extracellular vesicles? -- 2.6.2 Preclinical studies -- 2.6.3 Clinical studies -- 2.6.4 Limits of extracellular vesicle applications in clinical treatments -- 2.7 Conclusions -- Acknowledgments -- References
3 Novel strategies to improve delivery performances -- 3.1 Introduction -- 3.2 Functionalization strategies: the rationale -- 3.2.1 Chemical routes -- 3.2.1.1 Esterification and modification of active ester -- 3.2.1.2 Click chemistry -- 3.2.1.3 Other chemical cross-linking strategies -- 3.2.2 Physical routes -- 3.3 Applications in tissue engineering -- 3.3.1 The cell membranes barrier -- 3.3.2 The tumor environment -- 3.3.3 The blood-brain barrier -- 3.4 Applications in theranostics -- 3.5 Conclusions -- References -- 4 HR-MAS NMR Spectroscopy: novel technologies to measure delivery performance
4.1 Introduction -- 4.2 High-resolution magic angle spinning nuclear magnetic resonance -- 4.2.1 Theory -- 4.2.2 Experimental setup -- 4.2.3 Example HR-MAS resolution enhancement in hydrogel polymers and swollen polymers -- 4.3 Pulse field gradient HR-MAS nuclear magnetic resonance spectroscopy -- 4.3.1 Translational motion in isotropic systems -- 4.3.2 Restricted and anisotropic motion -- 4.4 Applications in drug delivery -- 4.4.1 Cyclodextrin nanosponges polymers -- 4.4.2 Agarose-carbomer copolymers hydrogels -- 4.5 Final remarks -- References
5 The role of first principles mathematical modeling in the nanomedicine field -- 5.1 The new challenges introduced by nanomedicine -- 5.2 Modeling approaches -- 5.2.1 An introduction to molecular modeling -- 5.2.2 Molecular dynamics -- 5.2.3 Coarse-grained simulations -- 5.2.4 Enhanced sampling methods -- 5.2.5 Macroscale models -- 5.3 Applications of mathematical modeling in the nanomedicine field -- 5.3.1 Biomolecular corona -- 5.3.2 Targeting and cellular uptake -- 5.3.3 Nanoparticle distribution and drug delivery -- 5.4 Conclusions -- References
    average rating: 0.0 (0 votes)
No physical items for this record

Includes index.

Front Cover -- Nanomaterials for Theranostics and Tissue Engineering -- Copyright Page -- Contents -- List of contributors -- Introduction -- 1 Polymeric nanoparticles for controlled drug delivery -- 1.1 General concepts and synthetic strategies -- 1.2 Polymer nanoparticles for controlled drug delivery -- 1.2.1 Stimuli-responsive polymer nanoparticles -- 1.3 The long road from the bench to the clinic -- 1.4 Conclusions -- References -- 2 Extracellular vesicles in regenerative medicine -- 2.1 Introduction -- 2.2 Cell-based therapies -- 2.3 Tissue engineering -- 2.4 Cell-free therapies

2.4.1 Soluble factors -- 2.4.2 Biogenic and synthetic nanoparticles -- 2.5 Extracellular vesicles in a nutshell -- 2.5.1 Extracellular vesicle biological and physicochemical properties -- 2.5.2 Extracellular vesicle separation and characterization -- 2.5.3 Medical translation of extracellular vesicles -- 2.6 Regenerative properties of extracellular vesicles -- 2.6.1 Why extracellular vesicles? -- 2.6.2 Preclinical studies -- 2.6.3 Clinical studies -- 2.6.4 Limits of extracellular vesicle applications in clinical treatments -- 2.7 Conclusions -- Acknowledgments -- References

3 Novel strategies to improve delivery performances -- 3.1 Introduction -- 3.2 Functionalization strategies: the rationale -- 3.2.1 Chemical routes -- 3.2.1.1 Esterification and modification of active ester -- 3.2.1.2 Click chemistry -- 3.2.1.3 Other chemical cross-linking strategies -- 3.2.2 Physical routes -- 3.3 Applications in tissue engineering -- 3.3.1 The cell membranes barrier -- 3.3.2 The tumor environment -- 3.3.3 The blood-brain barrier -- 3.4 Applications in theranostics -- 3.5 Conclusions -- References -- 4 HR-MAS NMR Spectroscopy: novel technologies to measure delivery performance

4.1 Introduction -- 4.2 High-resolution magic angle spinning nuclear magnetic resonance -- 4.2.1 Theory -- 4.2.2 Experimental setup -- 4.2.3 Example HR-MAS resolution enhancement in hydrogel polymers and swollen polymers -- 4.3 Pulse field gradient HR-MAS nuclear magnetic resonance spectroscopy -- 4.3.1 Translational motion in isotropic systems -- 4.3.2 Restricted and anisotropic motion -- 4.4 Applications in drug delivery -- 4.4.1 Cyclodextrin nanosponges polymers -- 4.4.2 Agarose-carbomer copolymers hydrogels -- 4.5 Final remarks -- References

5 The role of first principles mathematical modeling in the nanomedicine field -- 5.1 The new challenges introduced by nanomedicine -- 5.2 Modeling approaches -- 5.2.1 An introduction to molecular modeling -- 5.2.2 Molecular dynamics -- 5.2.3 Coarse-grained simulations -- 5.2.4 Enhanced sampling methods -- 5.2.5 Macroscale models -- 5.3 Applications of mathematical modeling in the nanomedicine field -- 5.3.1 Biomolecular corona -- 5.3.2 Targeting and cellular uptake -- 5.3.3 Nanoparticle distribution and drug delivery -- 5.4 Conclusions -- References

There are no comments for this item.

Log in to your account to post a comment.