Normal view MARC view ISBD view

Bioceramics : from macro to nanoscale / edited by Akiyoshi Osaka, Roger Narayan.

Contributor(s): Osaka, Akiyoshi [editor.] | Narayan, Roger [editor.].
Material type: materialTypeLabelBookSeries: Elsevier series on advanced ceramic materials.Publisher: Amsterdam, Netherlands ; Cambridge, MA : Elsevier, [2021]Description: 1 online resource (xv, 449 pages) : illustrations (some color).Content type: text Media type: computer Carrier type: online resourceISBN: 9780081030004; 0081030002.Subject(s): Ceramics in medicine | Ceramics | C�eramique en m�edecine | Ceramics in medicineAdditional physical formats: Print version:: Bioceramics : From Macro to Nanoscale.DDC classification: 610.284 Online resources: ScienceDirect
Contents:
Intro -- Bioceramics: From Macro to Nanoscale -- Copyright -- Dedication -- Contents -- Contributors -- Acknowledgments -- Chapter 1: Introduction -- References -- Part One: Nanostructured surfaces, Surface biomedical modifications of materials -- Chapter 2: Importance of nanostructured surfaces -- 1. Introduction -- 1.1. Properties of nanomaterials -- 1.2. Surface modifications of nanomaterials -- 1.3. Biomedical applications of nanomaterials -- 2. Surface modifications of nanomaterials -- 2.1. Chemical treatment -- 2.2. Sol-gel -- 2.3. Electrochemical treatment -- 2.3.1. Anodic oxidation
2.3.2. Micro-arc oxidation (MAO) -- 2.3.3. Electrophoretic deposition -- 2.4. Chemical vapor deposition -- 2.5. Biochemical methods -- 2.5.1. Esterification method -- 2.5.2. Coupling agent method -- 2.5.3. Surface grafting modification -- 2.6. Physical methods -- 2.6.1. Mechanical methods -- 2.6.2. Thermal spray method -- 2.6.3. Physical vapor deposition -- 2.6.4. Ion implantation and deposition -- 3. Important application of surface modification of nanomaterials in biomedical field -- 3.1. Bone tissue engineering -- 3.2. Drug carriers -- 3.3. Antibacterial properties
3.4. Medical imaging, diagnosis, and therapy -- 3.4.1. Medical imaging and diagnosis -- 3.4.2. Medical therapy -- 4. Summary -- References -- Chapter 3: Nanostructured TiO2 layers on Ti for bone bonding -- 1. Bioactive bone bonding intrigued by TiO2 layer on Ti implants -- 1.1. Ti-NaOH interaction -- 1.2. Ti-H2O2 interaction -- 1.3. Low temperature crystallization of TiO2 layer -- 2. Nanostructures to introduce bioactive and antibacterial surfaces on Ti implants -- 2.1. In vitro apatite deposition -- 2.2. Cell response -- 2.3. Antibacterial -- 3. Nanostructured TiO2 films on Ti and its alloys
3.1. Anodic oxidation -- 3.2. Alkali-hydrothermal treatment -- 3.3. Hydrogen peroxide treatment -- 3.3.1. Porous film -- 3.3.2. Nanorod array -- 3.3.3. Nanoflower array -- 3.3.4. Nanowire array and its derivants -- 3.3.5. Variant titanium sources -- 3.4. HF treatment -- 3.5. Other wet chemistry approaches -- 4. Conclusions and perspectives -- References -- Chapter 4: Organic modification of magnetite nanoparticles for biomedical applications -- 1. Cancer hyperthermia by magnetic nanoparticles -- 2. Preparation of magnetic nanoparticles -- 3. Interaction with organic molecules in Fe3O4 synthesis
4. Fe3O4 formation in hydrogel -- 5. Biological functions and hyperthermia applications of organically modified magnetite -- 6. Conclusions -- References -- Part Two: Nanoparticles for drug delivery applications, sensing, and diagnostics -- Chapter 5: NIR excitation of rare-earth ions in ceramics for diagnosis, bioimaging, and light-induced therapy -- 1. Introduction -- 2. Properties required for the RED-CNPs -- 3. Nanoparticle synthetic methods, size, and morphology -- 4. Surface modification -- 5. Biomedical applications of RED-CNPs -- 5.1. In vivo fluorescence imaging
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

Online resource; title from digital title page (viewed on October 09, 2020).

Intro -- Bioceramics: From Macro to Nanoscale -- Copyright -- Dedication -- Contents -- Contributors -- Acknowledgments -- Chapter 1: Introduction -- References -- Part One: Nanostructured surfaces, Surface biomedical modifications of materials -- Chapter 2: Importance of nanostructured surfaces -- 1. Introduction -- 1.1. Properties of nanomaterials -- 1.2. Surface modifications of nanomaterials -- 1.3. Biomedical applications of nanomaterials -- 2. Surface modifications of nanomaterials -- 2.1. Chemical treatment -- 2.2. Sol-gel -- 2.3. Electrochemical treatment -- 2.3.1. Anodic oxidation

2.3.2. Micro-arc oxidation (MAO) -- 2.3.3. Electrophoretic deposition -- 2.4. Chemical vapor deposition -- 2.5. Biochemical methods -- 2.5.1. Esterification method -- 2.5.2. Coupling agent method -- 2.5.3. Surface grafting modification -- 2.6. Physical methods -- 2.6.1. Mechanical methods -- 2.6.2. Thermal spray method -- 2.6.3. Physical vapor deposition -- 2.6.4. Ion implantation and deposition -- 3. Important application of surface modification of nanomaterials in biomedical field -- 3.1. Bone tissue engineering -- 3.2. Drug carriers -- 3.3. Antibacterial properties

3.4. Medical imaging, diagnosis, and therapy -- 3.4.1. Medical imaging and diagnosis -- 3.4.2. Medical therapy -- 4. Summary -- References -- Chapter 3: Nanostructured TiO2 layers on Ti for bone bonding -- 1. Bioactive bone bonding intrigued by TiO2 layer on Ti implants -- 1.1. Ti-NaOH interaction -- 1.2. Ti-H2O2 interaction -- 1.3. Low temperature crystallization of TiO2 layer -- 2. Nanostructures to introduce bioactive and antibacterial surfaces on Ti implants -- 2.1. In vitro apatite deposition -- 2.2. Cell response -- 2.3. Antibacterial -- 3. Nanostructured TiO2 films on Ti and its alloys

3.1. Anodic oxidation -- 3.2. Alkali-hydrothermal treatment -- 3.3. Hydrogen peroxide treatment -- 3.3.1. Porous film -- 3.3.2. Nanorod array -- 3.3.3. Nanoflower array -- 3.3.4. Nanowire array and its derivants -- 3.3.5. Variant titanium sources -- 3.4. HF treatment -- 3.5. Other wet chemistry approaches -- 4. Conclusions and perspectives -- References -- Chapter 4: Organic modification of magnetite nanoparticles for biomedical applications -- 1. Cancer hyperthermia by magnetic nanoparticles -- 2. Preparation of magnetic nanoparticles -- 3. Interaction with organic molecules in Fe3O4 synthesis

4. Fe3O4 formation in hydrogel -- 5. Biological functions and hyperthermia applications of organically modified magnetite -- 6. Conclusions -- References -- Part Two: Nanoparticles for drug delivery applications, sensing, and diagnostics -- Chapter 5: NIR excitation of rare-earth ions in ceramics for diagnosis, bioimaging, and light-induced therapy -- 1. Introduction -- 2. Properties required for the RED-CNPs -- 3. Nanoparticle synthetic methods, size, and morphology -- 4. Surface modification -- 5. Biomedical applications of RED-CNPs -- 5.1. In vivo fluorescence imaging

There are no comments for this item.

Log in to your account to post a comment.