Normal view MARC view ISBD view

Computational modelling of nanomaterials / edited by Panagiotis Grammatikopoulos.

Contributor(s): Grammatikopoulos, Panagiotis.
Material type: materialTypeLabelBookSeries: Frontiers of nanoscience ; 17.Publisher: Amsterdam, Netherlands : Elsevier, 2020Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128214985; 0128214988.Subject(s): Nanostructured materials -- Computer simulation | Nanomat�eriaux -- Simulation par ordinateurAdditional physical formats: Print version:: Computational modelling of nanomaterials.DDC classification: 620.1/15 Online resources: ScienceDirect
Contents:
Front Cover -- Computational Modelling of Nanomaterials -- Series Page -- Computational Modelling of Nanomaterials -- Copyright -- Contents -- Contributors -- Preface -- REFERENCE -- 1 -- Perspective of computational modeling of nanomaterials -- 1. History -- 2. Rise of nanoscience -- 3. Computer simulation of nanomaterials -- References -- 2 -- Computational modeling of nanoparticles in inert environment -- 1. Historical background and current challenges -- 2. Computational modeling method -- 2.1 Calculating the energy of a NP: quantum versus classical -- 2.2 Study dynamics: molecular dynamics
2.3 Atomistic Monte Carlo method -- 2.4 Metropolis Monte Carlo -- 2.5 Simulation of diffusional processes -- 2.6 Kinetic Monte Carlo -- 2.6.1 Calculation of energy barriers for KMC simulations -- 2.6.2 Formation of Fe nanocubes by KMC methods -- 3. Multiscale modeling of NPs in practice -- 3.1 Modeling a NP in inert gas-phase thermostat -- 3.2 Simulation of NP nucleation and growth in gas-phase condensation -- 3.3 NP emission from a solid Ar matrix -- 4. Conclusion -- Acknowledgment -- References -- 3 -- Multiscale modeling of magnetic nanoparticle systems -- 1. Introduction -- 2. The model
2.1 Electronic structure calculations of single magnetic nanoparticles -- 2.2 Mesoscopic-scale modeling -- 3. Case studies -- 3.1 Case study 1: magnetic behavior of Mn ferrite nanoparticles -- 3.2 Case study 2: magnetic behavior of Co ferrite nanoparticles coated with organic ligands -- 4. Concluding remarks -- Acknowledgment -- References -- 4 -- Formation and growth of fractal-like agglomerates and aggregates in the gas phase -- 1. Introduction -- 2. Nanoparticle characterization: size and structure -- 3. Nucleation, condensation, and surface growth -- 3.1 Metallic nanoparticles
3.2 Carbonaceous nanoparticles -- 4. Nanoparticle sintering -- 4.1 Sintering mechanisms -- 4.2 Sintering rates by molecular dynamics -- 4.3 Sintering rates by discrete element method -- 5. Coagulation -- 5.1 Coagulation by full coalescence -- 5.2 Coagulation by agglomeration -- 5.3 Coagulation by agglomeration and surface growth -- 6. Multiscale modeling -- 7. Concluding remarks -- References -- 5 -- Tuning thermal transport in nanowires: molecular dynamics and Monte Carlo simulations -- 1. Introduction -- 2. Methodology -- 2.1 Molecular dynamics
2.2 Monte Carlo method for the solution of the Boltzmann transport equation -- 2.2.1 Introduction -- 2.2.2 BTE formulation for phonons -- 2.2.3 Monte Carlo implementation -- 3. Studies -- 3.1 Silicon nanowires with diameter modulation -- 3.2 Growth direction of Bi2Te3 nanowires -- 4. Conclusions -- References -- 6 -- Protein modeling -- 1. Introduction to protein structure modeling -- 2. Modeling of protein structure based on sequence -- 2.1 Terminology and molecular file format -- 2.2 Application programs -- 2.3 Homology modeling of L-PGDS -- 2.3.1 Target sequence -- 2.3.2 Template selection
    average rating: 0.0 (0 votes)
No physical items for this record

Includes index.

Front Cover -- Computational Modelling of Nanomaterials -- Series Page -- Computational Modelling of Nanomaterials -- Copyright -- Contents -- Contributors -- Preface -- REFERENCE -- 1 -- Perspective of computational modeling of nanomaterials -- 1. History -- 2. Rise of nanoscience -- 3. Computer simulation of nanomaterials -- References -- 2 -- Computational modeling of nanoparticles in inert environment -- 1. Historical background and current challenges -- 2. Computational modeling method -- 2.1 Calculating the energy of a NP: quantum versus classical -- 2.2 Study dynamics: molecular dynamics

2.3 Atomistic Monte Carlo method -- 2.4 Metropolis Monte Carlo -- 2.5 Simulation of diffusional processes -- 2.6 Kinetic Monte Carlo -- 2.6.1 Calculation of energy barriers for KMC simulations -- 2.6.2 Formation of Fe nanocubes by KMC methods -- 3. Multiscale modeling of NPs in practice -- 3.1 Modeling a NP in inert gas-phase thermostat -- 3.2 Simulation of NP nucleation and growth in gas-phase condensation -- 3.3 NP emission from a solid Ar matrix -- 4. Conclusion -- Acknowledgment -- References -- 3 -- Multiscale modeling of magnetic nanoparticle systems -- 1. Introduction -- 2. The model

2.1 Electronic structure calculations of single magnetic nanoparticles -- 2.2 Mesoscopic-scale modeling -- 3. Case studies -- 3.1 Case study 1: magnetic behavior of Mn ferrite nanoparticles -- 3.2 Case study 2: magnetic behavior of Co ferrite nanoparticles coated with organic ligands -- 4. Concluding remarks -- Acknowledgment -- References -- 4 -- Formation and growth of fractal-like agglomerates and aggregates in the gas phase -- 1. Introduction -- 2. Nanoparticle characterization: size and structure -- 3. Nucleation, condensation, and surface growth -- 3.1 Metallic nanoparticles

3.2 Carbonaceous nanoparticles -- 4. Nanoparticle sintering -- 4.1 Sintering mechanisms -- 4.2 Sintering rates by molecular dynamics -- 4.3 Sintering rates by discrete element method -- 5. Coagulation -- 5.1 Coagulation by full coalescence -- 5.2 Coagulation by agglomeration -- 5.3 Coagulation by agglomeration and surface growth -- 6. Multiscale modeling -- 7. Concluding remarks -- References -- 5 -- Tuning thermal transport in nanowires: molecular dynamics and Monte Carlo simulations -- 1. Introduction -- 2. Methodology -- 2.1 Molecular dynamics

2.2 Monte Carlo method for the solution of the Boltzmann transport equation -- 2.2.1 Introduction -- 2.2.2 BTE formulation for phonons -- 2.2.3 Monte Carlo implementation -- 3. Studies -- 3.1 Silicon nanowires with diameter modulation -- 3.2 Growth direction of Bi2Te3 nanowires -- 4. Conclusions -- References -- 6 -- Protein modeling -- 1. Introduction to protein structure modeling -- 2. Modeling of protein structure based on sequence -- 2.1 Terminology and molecular file format -- 2.2 Application programs -- 2.3 Homology modeling of L-PGDS -- 2.3.1 Target sequence -- 2.3.2 Template selection

There are no comments for this item.

Log in to your account to post a comment.