Normal view MARC view ISBD view

2D materials for nanophotonics / edited by Young Min Jhon and Ju Han Lee.

Contributor(s): Jhon, Young Min | Lee, Ju Han.
Material type: materialTypeLabelBookSeries: Nanophotonics (Elsevier (Firm)): Publisher: San Diego, California : Elsevier, 2020Description: 1 online resource (413 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 0128186593; 9780128186596.Subject(s): Nanophotonics -- Materials | Nanophotonique -- Mat�eriauxAdditional physical formats: Print version:: 2D Materials for Nanophotonics.DDC classification: 621.365 Online resources: ScienceDirect
Contents:
Front Cover -- 2D Materials for Nanophotonics -- Copyright Page -- Contents -- List of contributors -- 1 Synthesis of graphene and other two-dimensional materials -- 1.1 Introduction -- 1.2 Synthesis of graphene -- 1.2.1 Top-down synthesis -- 1.2.2 Bottom-up synthesis -- 1.2.3 Structural Raman characterization after the synthesis -- 1.3 Synthesis of other two-dimensional materials -- 1.3.1 Micromechanical exfoliation -- 1.3.2 Ultrasonic exfoliation -- 1.3.3 Lithium intercalated and exfoliation -- 1.3.4 Hydro/solvothermal synthesis -- 1.3.5 Template synthesis -- 1.3.6 Microwave-assisted method
1.3.7 Topochemical transformation -- 1.3.8 Pulsed laser deposition -- 1.3.9 Chemical vapor deposition -- 1.3.9.1 Chemical vapor deposition growth of two-dimensional transition metal dichalcogenides -- 1.3.9.2 Chemical vapor deposition growth of graphene -- 1.3.9.3 Chemical vapor deposition growth of two-dimensional hexagonal boron nitride -- 1.4 van der Waals heterostructures -- 1.4.1 Heterostructures by mechanical stacking -- 1.4.2 Direct synthesis of two-dimensional heterostructures -- 1.4.2.1 Vertically stacked two-dimensional heterojunctions
1.4.2.2 Laterally stitched two-dimensional heterojunctions -- 1.4.2.2.1 Lateral semiconductor-semiconductor heterostructures -- 1.4.2.2.2 Lateral conductor-insulator heterostructures -- 1.4.2.2.3 Lateral conductor-semiconductor heterostructures -- 1.5 Conclusion -- Acknowledgments -- References -- 2 Topological insulators and applications -- 2.1 Introduction -- 2.1.1 Topological insulators -- 2.2 Material structures and properties of topological insulators -- 2.2.1 Theoretical approach to the electronic and optical properties of topological insulators -- 2.2.1.1 Bi2Se3 and Bi2Te3
2.2.2 The optical property of topological insulators -- 2.2.2.1 Linear optical properties -- 2.2.2.1.1 Optical transitions -- 2.2.2.1.2 Absorption -- 2.2.2.2 Nonlinear optical properties -- 2.2.2.2.1 Z-scan measurement -- 2.2.2.2.2 Ultrafast pump-probe measurement -- 2.3 Applications -- 2.3.1 Topological insulator-based SA fabrication methods for laser application -- 2.3.2 Fiberized saturable absorbers based on bulk-structured Bi2Te3 topological insulators -- 2.3.2.1 Fabrication and characterization of bulk-structured Bi2Te3 topological insulators
2.3.2.2 Nonlinear transmission curve of the bulk-structured Bi2Te3 topological insulator-based saturable absorbers -- 2.3.2.3 Passively Q-switched fiber lasers -- 2.3.2.3.1 Passively Q-switched ytterbium-doped fiber laser -- 2.3.2.3.2 Passively Q-switched erbium-doped fiber laser -- 2.3.2.3.3 Passively Q-switched thulium-holmium codoped fiber laser -- 2.3.2.4 Passively mode-locked fiber lasers -- 2.3.2.4.1 1�m dissipative soliton fiber laser using bulk-structured Bi2Te3 topological insulator -- 2.3.2.4.2 1.5�m femtosecond soliton fiber laser using bulk-structured Bi2Te3 topological insulator
    average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Front Cover -- 2D Materials for Nanophotonics -- Copyright Page -- Contents -- List of contributors -- 1 Synthesis of graphene and other two-dimensional materials -- 1.1 Introduction -- 1.2 Synthesis of graphene -- 1.2.1 Top-down synthesis -- 1.2.2 Bottom-up synthesis -- 1.2.3 Structural Raman characterization after the synthesis -- 1.3 Synthesis of other two-dimensional materials -- 1.3.1 Micromechanical exfoliation -- 1.3.2 Ultrasonic exfoliation -- 1.3.3 Lithium intercalated and exfoliation -- 1.3.4 Hydro/solvothermal synthesis -- 1.3.5 Template synthesis -- 1.3.6 Microwave-assisted method

1.3.7 Topochemical transformation -- 1.3.8 Pulsed laser deposition -- 1.3.9 Chemical vapor deposition -- 1.3.9.1 Chemical vapor deposition growth of two-dimensional transition metal dichalcogenides -- 1.3.9.2 Chemical vapor deposition growth of graphene -- 1.3.9.3 Chemical vapor deposition growth of two-dimensional hexagonal boron nitride -- 1.4 van der Waals heterostructures -- 1.4.1 Heterostructures by mechanical stacking -- 1.4.2 Direct synthesis of two-dimensional heterostructures -- 1.4.2.1 Vertically stacked two-dimensional heterojunctions

1.4.2.2 Laterally stitched two-dimensional heterojunctions -- 1.4.2.2.1 Lateral semiconductor-semiconductor heterostructures -- 1.4.2.2.2 Lateral conductor-insulator heterostructures -- 1.4.2.2.3 Lateral conductor-semiconductor heterostructures -- 1.5 Conclusion -- Acknowledgments -- References -- 2 Topological insulators and applications -- 2.1 Introduction -- 2.1.1 Topological insulators -- 2.2 Material structures and properties of topological insulators -- 2.2.1 Theoretical approach to the electronic and optical properties of topological insulators -- 2.2.1.1 Bi2Se3 and Bi2Te3

2.2.2 The optical property of topological insulators -- 2.2.2.1 Linear optical properties -- 2.2.2.1.1 Optical transitions -- 2.2.2.1.2 Absorption -- 2.2.2.2 Nonlinear optical properties -- 2.2.2.2.1 Z-scan measurement -- 2.2.2.2.2 Ultrafast pump-probe measurement -- 2.3 Applications -- 2.3.1 Topological insulator-based SA fabrication methods for laser application -- 2.3.2 Fiberized saturable absorbers based on bulk-structured Bi2Te3 topological insulators -- 2.3.2.1 Fabrication and characterization of bulk-structured Bi2Te3 topological insulators

2.3.2.2 Nonlinear transmission curve of the bulk-structured Bi2Te3 topological insulator-based saturable absorbers -- 2.3.2.3 Passively Q-switched fiber lasers -- 2.3.2.3.1 Passively Q-switched ytterbium-doped fiber laser -- 2.3.2.3.2 Passively Q-switched erbium-doped fiber laser -- 2.3.2.3.3 Passively Q-switched thulium-holmium codoped fiber laser -- 2.3.2.4 Passively mode-locked fiber lasers -- 2.3.2.4.1 1�m dissipative soliton fiber laser using bulk-structured Bi2Te3 topological insulator -- 2.3.2.4.2 1.5�m femtosecond soliton fiber laser using bulk-structured Bi2Te3 topological insulator

2.3.2.4.3 2�m femtosecond soliton fiber laser using bulk-structured Bi2Te3 topological insulator.

Includes index.

There are no comments for this item.

Log in to your account to post a comment.