Normal view MARC view ISBD view

Hybrid nanofluids : preparation, characterization and applications / edited by Zafar Said.

Contributor(s): Said, Zafar.
Material type: materialTypeLabelBookSeries: Micro & nano technologies: Publisher: Amsterdam : Elsevier, 2022Description: 1 online resource (280 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 0323855717; 9780323855716.Subject(s): Nanofluids | Nanofluids -- Industrial applications | Nanofluides | Nanofluides -- Applications industrielles | NanofluidsAdditional physical formats: Print version:: Hybrid Nanofluids.DDC classification: 620.106 Online resources: ScienceDirect
Contents:
Intro -- Hybrid Nanofluids: Preparation, Characterization and Applications -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Introduction to hybrid nanofluids -- 1.1. Introduction -- 1.1.1. Development of nanomaterials and nanofluids -- 1.1.2. Drawbacks of mono nanofluids -- 1.1.3. Development of hybrid nanofluids -- 1.2. Preparation of hybrid nanofluids -- 1.3. Properties of hybrid nanofluids -- 1.3.1. Thermal conductivity -- 1.3.2. Viscosity -- 1.3.3. Density -- 1.3.4. Specific heat capacity -- 1.3.5. Thermal diffusivity
1.3.6. Electrical, magnetic, dielectric -- 1.4. Applications of hybrid nanofluids -- 1.4.1. Electronic cooling -- 1.4.2. Solar collectors -- 1.4.3. Heat exchangers -- 1.4.4. Nuclear PWR -- 1.4.5. Engine cooling -- 1.4.6. Refrigeration -- 1.4.7. Machining -- 1.4.8. Desalination -- 1.5. Challenges and outlook -- 1.6. Conclusion -- References -- Chapter 2: Preparation and stability of hybrid nanofluids -- 2.1. Introduction -- 2.1.1. One-step method -- 2.1.2. Two-step method -- 2.1.3. Comparison of one-step and two-step methods -- 2.2. Stability of nanofluids -- 2.2.1. Stability evaluation methods
Sedimentation method -- Centrifugation method -- Zeta potential method -- Spectral absorbance analysis -- Thermal conductivity measurement -- Electron microscopy -- 2.2.2. Stability enhancement methods -- Ultrasonication -- Addition of surfactants -- Surface modification of nanoparticles -- pH change -- 2.3. Challenges and outlook -- 2.4. Summary -- References -- Chapter 3: Thermophysical, electrical, magnetic, and dielectric properties of hybrid nanofluids -- 3.1. Thermophysical properties -- 3.1.1. Thermal conductivity -- 3.1.2. Viscosity of hybrid nanofluids
3.1.3. Specific heat and density of hybrid nanofluids -- 3.1.4. Magnetic property -- 3.1.5. Dielectric property -- 3.2. Conclusion -- Acknowledgments -- References -- Chapter 4: Hydrothermal properties of hybrid nanofluids -- 4.1. Introduction -- 4.2. Surface tension -- 4.3. Friction factor -- 4.4. Pressure drop -- 4.5. Pumping power -- 4.6. Fouling factor of nanofluid -- 4.7. Conclusions and challenges -- Acknowledgments -- References -- Chapter 5: Rheological behavior of hybrid nanofluids -- 5.1. Introduction -- 5.2. Experimental and numerical studies on rheology
5.3. Effects of various parameters on the rheology of hybrid nanofluids -- 5.3.1. Temperature -- 5.3.2. Particle size and shape -- 5.3.3. Volume concentration -- 5.3.4. Other factors -- 5.4. Conclusion and future outlook -- References -- Chapter 6: Radiative transport of hybrid nanofluid -- Subscript -- 6.1. Introduction -- 6.2. Optical properties -- 6.2.1. Rayleigh scattering approximation -- 6.2.2. Maxwell-Garnett approximation -- 6.2.3. Mie scattering approximation -- 6.3. Radiative transfer -- 6.4. Effect of different parameters on optical properties -- 6.4.1. Effect of particle size
    average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Intro -- Hybrid Nanofluids: Preparation, Characterization and Applications -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Introduction to hybrid nanofluids -- 1.1. Introduction -- 1.1.1. Development of nanomaterials and nanofluids -- 1.1.2. Drawbacks of mono nanofluids -- 1.1.3. Development of hybrid nanofluids -- 1.2. Preparation of hybrid nanofluids -- 1.3. Properties of hybrid nanofluids -- 1.3.1. Thermal conductivity -- 1.3.2. Viscosity -- 1.3.3. Density -- 1.3.4. Specific heat capacity -- 1.3.5. Thermal diffusivity

1.3.6. Electrical, magnetic, dielectric -- 1.4. Applications of hybrid nanofluids -- 1.4.1. Electronic cooling -- 1.4.2. Solar collectors -- 1.4.3. Heat exchangers -- 1.4.4. Nuclear PWR -- 1.4.5. Engine cooling -- 1.4.6. Refrigeration -- 1.4.7. Machining -- 1.4.8. Desalination -- 1.5. Challenges and outlook -- 1.6. Conclusion -- References -- Chapter 2: Preparation and stability of hybrid nanofluids -- 2.1. Introduction -- 2.1.1. One-step method -- 2.1.2. Two-step method -- 2.1.3. Comparison of one-step and two-step methods -- 2.2. Stability of nanofluids -- 2.2.1. Stability evaluation methods

Sedimentation method -- Centrifugation method -- Zeta potential method -- Spectral absorbance analysis -- Thermal conductivity measurement -- Electron microscopy -- 2.2.2. Stability enhancement methods -- Ultrasonication -- Addition of surfactants -- Surface modification of nanoparticles -- pH change -- 2.3. Challenges and outlook -- 2.4. Summary -- References -- Chapter 3: Thermophysical, electrical, magnetic, and dielectric properties of hybrid nanofluids -- 3.1. Thermophysical properties -- 3.1.1. Thermal conductivity -- 3.1.2. Viscosity of hybrid nanofluids

3.1.3. Specific heat and density of hybrid nanofluids -- 3.1.4. Magnetic property -- 3.1.5. Dielectric property -- 3.2. Conclusion -- Acknowledgments -- References -- Chapter 4: Hydrothermal properties of hybrid nanofluids -- 4.1. Introduction -- 4.2. Surface tension -- 4.3. Friction factor -- 4.4. Pressure drop -- 4.5. Pumping power -- 4.6. Fouling factor of nanofluid -- 4.7. Conclusions and challenges -- Acknowledgments -- References -- Chapter 5: Rheological behavior of hybrid nanofluids -- 5.1. Introduction -- 5.2. Experimental and numerical studies on rheology

5.3. Effects of various parameters on the rheology of hybrid nanofluids -- 5.3.1. Temperature -- 5.3.2. Particle size and shape -- 5.3.3. Volume concentration -- 5.3.4. Other factors -- 5.4. Conclusion and future outlook -- References -- Chapter 6: Radiative transport of hybrid nanofluid -- Subscript -- 6.1. Introduction -- 6.2. Optical properties -- 6.2.1. Rayleigh scattering approximation -- 6.2.2. Maxwell-Garnett approximation -- 6.2.3. Mie scattering approximation -- 6.3. Radiative transfer -- 6.4. Effect of different parameters on optical properties -- 6.4.1. Effect of particle size

6.4.2. Effect of volume fraction.

There are no comments for this item.

Log in to your account to post a comment.