Normal view MARC view ISBD view

Engineered polymer nanocomposites for energy harvesting applications / edited by M.T. Rahul [and more].

Contributor(s): Rahul, M. T.
Material type: materialTypeLabelBookPublisher: Amsterdam, Netherlands : Elsevier, 2022Description: 1 online resource.Content type: text | still image Media type: computer Carrier type: online resourceISBN: 9780323853316; 0323853315.Subject(s): Energy harvesting | Polymer engineering | Polymeric composites | Nanocomposites (Materials) | Energy harvesting | Nanocomposites (Materials) | Polymer engineering | Polymeric compositesAdditional physical formats: ebook version :: No title; No title; Print version:: ENGINEERED POLYMER NANOCOMPOSITES FOR ENERGY HARVESTING APPLICATIONS.DDC classification: 621.042 Online resources: ScienceDirect
Contents:
Front Cover -- Engineered Polymer Nanocomposites for Energy Harvesting Applications -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Recent advances in vinylidene fluoride copolymers and their applications as nanomaterials -- 1.1 Introduction -- 1.2 Different classes of ferroelectric polymers -- 1.3 PVDF and VDF copolymers and terpolymers -- 1.3.1 PVDF homopolymer -- 1.3.2 VDF co-/terpolymers -- 1.3.2.1 P(VDF-co-HFP) copolymers -- 1.3.2.2 P(VDF-co-CTFE) copolymers -- 1.3.2.3 P(VDF-co-trifluoroethylene) copolymers -- 1.3.2.4 P(VDF-co-2,3,3,3-tetrafluoropropene) copolymers -- 1.3.2.5 P(VDF-ter-TrFE-ter-CTFE) terpolymers -- 1.3.2.6 P(VDF-ter-TrFE-ter-CFE) terpolymers -- 1.3.2.7 Other P(VDF-ter-TrFE-ter-M) terpolymers -- 1.4 Properties of PVDF and VDF copolymers -- 1.4.1 Mechanical and thermal properties -- 1.4.2 Electrical properties -- 1.5 Applications -- 1.5.1 Sonars -- 1.5.2 Actuators and sensors -- 1.5.3 Others -- 1.6 Conclusion -- Acknowledgments -- References -- 2 Characterization methods used for the identification of ferroelectric beta phase of fluoropolymers -- 2.1 Introduction -- 2.2 Processing of beta phase using different methods -- 2.2.1 Melt method -- 2.2.2 Quenching method -- 2.2.3 Pressing and folding operation -- 2.2.4 Additives -- 2.3 Characterization techniques -- 2.3.1 Differential scanning calorimetry -- 2.3.1.1 Difference between poled and unpoled DSC curves -- 2.3.2 Fourier-transform infrared spectroscopy -- 2.3.2.1 Calculation of individual beta and gamma phase -- 2.3.3 X-ray diffraction -- 2.3.4 Ferroelectric hysteresis loop/PE loop -- 2.3.4.1 Ferroelasticity -- 2.3.5 Dielectric properties -- 2.4 Conclusion -- Conflict of interest -- References -- 3 Polymer/metal oxides nanocomposites-based piezoelectric energy-harvesters -- 3.1 Introduction -- 3.2 Polymer-based nanogenerators.
3.2.1 Polyvinyldene fluoride-based piezoelectric nanogenerators -- 3.2.2 Polyvinyldene fluoride-trifluoroethylene/multiwalled carbon nanotubes-based piezoelectric nanogenerators -- 3.2.3 Polyvinylidene fluoride-hexafluoropropylene/multiwalled carbon nanotubes-based piezoelectric nanogenerator -- 3.2.4 Poly-l-lactic acid nanofiber-based piezoelectric nanogenerator -- 3.2.5 Nylon 11/cellulose nanocrystal-based piezoelectric nanogenerator -- 3.2.6 Cellulose-based energy generator -- 3.2.7 Gelatin nanofiber-based piezoelectric pressure sensor -- 3.3 Polymer-metal oxide nanocomposites-based piezoelectric energy harvesters -- 3.3.1 Lead zirconate titanate-polymer nanocomposites -- 3.3.2 Barium titanate-polymer nanocomposites -- 3.3.3 Zinc oxide-polymer nanocomposite -- 3.3.4 Lead magnesium niobate-lead titanate-polymer nanocomposites -- 3.3.5 Other metal oxide-polymer nanocomposites -- 3.4 Conclusion -- References -- 4 2D materials-polymer composites for developing piezoelectric energy-harvesting devices -- 4.1 Introduction -- 4.1.1 Energy-harvesting -- 4.1.2 Piezoelectricity -- 4.1.3 Piezoelectric materials -- 4.1.3.1 Piezoceramics -- 4.1.3.2 Piezo single crystals -- 4.1.3.3 Piezopolymers -- 4.1.4 Composites -- 4.1.4.1 Polymer-based composites -- 4.1.5 2-dimensional materials -- 4.2 Role of 2-dimensional materials in polymer composites for piezoelectric-based energy-harvesting devices -- 4.2.1 Common device configuration for piezoelectric energy-harvesting -- 4.2.2 2-dimensional-materials and polymer composites for piezoelectric energy-harvesting devices -- 4.3 Applications -- 4.4 Conclusion -- References -- 5 Non-fluorinated piezoelectric polymers and their composites for energy harvesting applications -- 5.1 Introduction -- 5.2 Piezoelectricity in semicrystalline polymers -- 5.3 Piezoelectricity in natural polymers.
5.4 Piezoelectricity in amorphous polymers -- 5.5 Energy-harvesting applications -- 5.5.1 Polyamides -- 5.5.2 Poly(L-lactic acid) -- 5.5.3 Poly(caprolactone) -- 5.5.4 Poly(acrylonitrile) -- 5.5.5 Cellulose -- 5.5.6 Chitin/chitosan -- 5.5.7 Collagen -- 5.5.8 Silk -- 5.5.9 Other polymers -- 5.6 Summary and future outlook -- References -- 6 Polysaccharide-based nanocomposites for energy-harvesting nanogenerators -- 6.1 Introduction -- 6.2 Piezoelectric nanogenerators -- 6.2.1 Operation modes -- 6.3 Triboelectric nanogenerators -- 6.3.1 Working modes of triboelectric nanogenerators -- 6.3.1.1 Contact-separation mode -- 6.3.1.2 Lateral sliding mode -- 6.3.1.3 Free-standing mode -- 6.3.1.4 Single-electrode mode -- 6.4 Nanocellulose-based energy-harvesting nanogenerators -- 6.4.1 Bacterial cellulose-based triboelectric nanogenerators -- 6.4.2 Bacterial cellulose-based piezoelectric nanogenerators -- 6.4.3 Nanocellulose-based hybrid piezoelectric nanogenerator-triboelectric nanogenerator -- 6.5 Chitin and chitosan-based energy-harvesting nanogenerators -- 6.5.1 Chitin-based triboelectric nanogenerators -- 6.5.2 Chitin based piezoelectric nanogenerators -- 6.6 Porous nanocellulose/chitosan aerogel film-based triboelectric nanogenerators -- 6.7 Miscellaneous polysaccharides-based energy-harvesting nanogenerators -- 6.7.1 Pullulan-based triboelectric nanogenerator -- 6.7.2 Sodium alginate based piezoelectric nanogenerators -- 6.7.3 Starch-based triboelectric nanogenerators -- 6.8 Conclusion and future outlook -- References -- 7 Polymer-based composite materials for triboelectric energy harvesting -- 7.1 Introduction -- 7.2 Material selection -- 7.2.1 Triboelectric series -- 7.2.2 Triboelectrification -- 7.2.3 Material transfer mechanism and polymer electrets -- 7.3 Polymer and Composite polymer materials.
7.4 Composite polymer-based triboelectric nanogenerator applications -- 7.5 Conclusion -- Acknowledgment -- References -- 8 Magnetoelectric polymer nanocomposites for energy harvesting -- 8.1 Introduction -- 8.2 Magnetoelectric materials -- 8.3 Materials -- 8.3.1 Magnetic/magnetostrictive materials -- 8.3.2 Ferroelectric materials -- 8.3.3 Ferroelectric polymers -- 8.3.3.1 Polyvinylidene fluoride and its copolymers -- 8.4 Types of polymer-based magnetoelectric composites -- 8.5 Fabrication methods of polymer-based multiferroic composites -- 8.5.1 Solvent casting -- 8.5.2 Electrospinning -- 8.6 Energy harvesting aspects of magnetoelectric material -- 8.7 Conclusion -- References -- 9 Hybrid composites with shape memory alloys and piezoelectric thin layers -- 9.1 Introduction -- 9.2 Multiphysics behavior modeling and characterization -- 9.2.1 Modeling of the shape memory alloys thermomechanical behavior -- 9.2.2 Modeling of the ferroelectric and ferroelastic behaviors of piezoelectric materials -- 9.2.3 Modeling of the thermoelectromechanical response of hybrid shape memory alloys/piezo composites -- 9.3 Multilayer manufacturing and characterization -- 9.3.1 First devices -- 9.3.2 Processing of the shape memory alloys/poly(vinylidene fluoride-trifluoroethylene) hybrid composite -- 9.4 Finite element analysis of shape memory alloys/piezo composite response for energy harvesting -- 9.5 Harvester manufacturing, instrumentation, and performance analysis -- 9.5.1 Energy harvesting from hybrid composite (shape memory alloys/piezo) -- 9.5.2 Thermal-mechanical-electrical energy harvesting -- 9.5.3 Electrothermomechanical characterization bench -- 9.5.4 Electronic circuits for piezoelectric energy harvesting -- 9.6 Conclusion -- References -- 10 Designing piezo- and pyroelectric energy harvesters -- 10.1 Introduction -- 10.2 Piezoelectric nanogenerator.
10.2.1 Inorganic piezoelectric materials -- 10.2.1.1 Zinc oxide nanowires-based piezoelectric nanogenerators -- 10.2.1.2 Polycrystalline lead zirconate titanate-based piezoelectric nanogenerators -- 10.2.1.3 Composite-based materials-based piezoelectric nanogenerators -- 10.2.2 Organic piezoelectric materials -- 10.2.3 Biodegradable materials-based piezoelectric nanogenerators -- 10.3 Pyroelectric nanogenerator -- 10.3.1 The progress of pyroelectric nanogenerator -- 10.4 Coupled piezo- and pyroelectric nanogenerator -- 10.5 Conclusion and future outlook -- Acknowledgment -- Conflicts of interest -- References -- Index -- Back Cover.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes index.

Print version record.

Front Cover -- Engineered Polymer Nanocomposites for Energy Harvesting Applications -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Recent advances in vinylidene fluoride copolymers and their applications as nanomaterials -- 1.1 Introduction -- 1.2 Different classes of ferroelectric polymers -- 1.3 PVDF and VDF copolymers and terpolymers -- 1.3.1 PVDF homopolymer -- 1.3.2 VDF co-/terpolymers -- 1.3.2.1 P(VDF-co-HFP) copolymers -- 1.3.2.2 P(VDF-co-CTFE) copolymers -- 1.3.2.3 P(VDF-co-trifluoroethylene) copolymers -- 1.3.2.4 P(VDF-co-2,3,3,3-tetrafluoropropene) copolymers -- 1.3.2.5 P(VDF-ter-TrFE-ter-CTFE) terpolymers -- 1.3.2.6 P(VDF-ter-TrFE-ter-CFE) terpolymers -- 1.3.2.7 Other P(VDF-ter-TrFE-ter-M) terpolymers -- 1.4 Properties of PVDF and VDF copolymers -- 1.4.1 Mechanical and thermal properties -- 1.4.2 Electrical properties -- 1.5 Applications -- 1.5.1 Sonars -- 1.5.2 Actuators and sensors -- 1.5.3 Others -- 1.6 Conclusion -- Acknowledgments -- References -- 2 Characterization methods used for the identification of ferroelectric beta phase of fluoropolymers -- 2.1 Introduction -- 2.2 Processing of beta phase using different methods -- 2.2.1 Melt method -- 2.2.2 Quenching method -- 2.2.3 Pressing and folding operation -- 2.2.4 Additives -- 2.3 Characterization techniques -- 2.3.1 Differential scanning calorimetry -- 2.3.1.1 Difference between poled and unpoled DSC curves -- 2.3.2 Fourier-transform infrared spectroscopy -- 2.3.2.1 Calculation of individual beta and gamma phase -- 2.3.3 X-ray diffraction -- 2.3.4 Ferroelectric hysteresis loop/PE loop -- 2.3.4.1 Ferroelasticity -- 2.3.5 Dielectric properties -- 2.4 Conclusion -- Conflict of interest -- References -- 3 Polymer/metal oxides nanocomposites-based piezoelectric energy-harvesters -- 3.1 Introduction -- 3.2 Polymer-based nanogenerators.

3.2.1 Polyvinyldene fluoride-based piezoelectric nanogenerators -- 3.2.2 Polyvinyldene fluoride-trifluoroethylene/multiwalled carbon nanotubes-based piezoelectric nanogenerators -- 3.2.3 Polyvinylidene fluoride-hexafluoropropylene/multiwalled carbon nanotubes-based piezoelectric nanogenerator -- 3.2.4 Poly-l-lactic acid nanofiber-based piezoelectric nanogenerator -- 3.2.5 Nylon 11/cellulose nanocrystal-based piezoelectric nanogenerator -- 3.2.6 Cellulose-based energy generator -- 3.2.7 Gelatin nanofiber-based piezoelectric pressure sensor -- 3.3 Polymer-metal oxide nanocomposites-based piezoelectric energy harvesters -- 3.3.1 Lead zirconate titanate-polymer nanocomposites -- 3.3.2 Barium titanate-polymer nanocomposites -- 3.3.3 Zinc oxide-polymer nanocomposite -- 3.3.4 Lead magnesium niobate-lead titanate-polymer nanocomposites -- 3.3.5 Other metal oxide-polymer nanocomposites -- 3.4 Conclusion -- References -- 4 2D materials-polymer composites for developing piezoelectric energy-harvesting devices -- 4.1 Introduction -- 4.1.1 Energy-harvesting -- 4.1.2 Piezoelectricity -- 4.1.3 Piezoelectric materials -- 4.1.3.1 Piezoceramics -- 4.1.3.2 Piezo single crystals -- 4.1.3.3 Piezopolymers -- 4.1.4 Composites -- 4.1.4.1 Polymer-based composites -- 4.1.5 2-dimensional materials -- 4.2 Role of 2-dimensional materials in polymer composites for piezoelectric-based energy-harvesting devices -- 4.2.1 Common device configuration for piezoelectric energy-harvesting -- 4.2.2 2-dimensional-materials and polymer composites for piezoelectric energy-harvesting devices -- 4.3 Applications -- 4.4 Conclusion -- References -- 5 Non-fluorinated piezoelectric polymers and their composites for energy harvesting applications -- 5.1 Introduction -- 5.2 Piezoelectricity in semicrystalline polymers -- 5.3 Piezoelectricity in natural polymers.

5.4 Piezoelectricity in amorphous polymers -- 5.5 Energy-harvesting applications -- 5.5.1 Polyamides -- 5.5.2 Poly(L-lactic acid) -- 5.5.3 Poly(caprolactone) -- 5.5.4 Poly(acrylonitrile) -- 5.5.5 Cellulose -- 5.5.6 Chitin/chitosan -- 5.5.7 Collagen -- 5.5.8 Silk -- 5.5.9 Other polymers -- 5.6 Summary and future outlook -- References -- 6 Polysaccharide-based nanocomposites for energy-harvesting nanogenerators -- 6.1 Introduction -- 6.2 Piezoelectric nanogenerators -- 6.2.1 Operation modes -- 6.3 Triboelectric nanogenerators -- 6.3.1 Working modes of triboelectric nanogenerators -- 6.3.1.1 Contact-separation mode -- 6.3.1.2 Lateral sliding mode -- 6.3.1.3 Free-standing mode -- 6.3.1.4 Single-electrode mode -- 6.4 Nanocellulose-based energy-harvesting nanogenerators -- 6.4.1 Bacterial cellulose-based triboelectric nanogenerators -- 6.4.2 Bacterial cellulose-based piezoelectric nanogenerators -- 6.4.3 Nanocellulose-based hybrid piezoelectric nanogenerator-triboelectric nanogenerator -- 6.5 Chitin and chitosan-based energy-harvesting nanogenerators -- 6.5.1 Chitin-based triboelectric nanogenerators -- 6.5.2 Chitin based piezoelectric nanogenerators -- 6.6 Porous nanocellulose/chitosan aerogel film-based triboelectric nanogenerators -- 6.7 Miscellaneous polysaccharides-based energy-harvesting nanogenerators -- 6.7.1 Pullulan-based triboelectric nanogenerator -- 6.7.2 Sodium alginate based piezoelectric nanogenerators -- 6.7.3 Starch-based triboelectric nanogenerators -- 6.8 Conclusion and future outlook -- References -- 7 Polymer-based composite materials for triboelectric energy harvesting -- 7.1 Introduction -- 7.2 Material selection -- 7.2.1 Triboelectric series -- 7.2.2 Triboelectrification -- 7.2.3 Material transfer mechanism and polymer electrets -- 7.3 Polymer and Composite polymer materials.

7.4 Composite polymer-based triboelectric nanogenerator applications -- 7.5 Conclusion -- Acknowledgment -- References -- 8 Magnetoelectric polymer nanocomposites for energy harvesting -- 8.1 Introduction -- 8.2 Magnetoelectric materials -- 8.3 Materials -- 8.3.1 Magnetic/magnetostrictive materials -- 8.3.2 Ferroelectric materials -- 8.3.3 Ferroelectric polymers -- 8.3.3.1 Polyvinylidene fluoride and its copolymers -- 8.4 Types of polymer-based magnetoelectric composites -- 8.5 Fabrication methods of polymer-based multiferroic composites -- 8.5.1 Solvent casting -- 8.5.2 Electrospinning -- 8.6 Energy harvesting aspects of magnetoelectric material -- 8.7 Conclusion -- References -- 9 Hybrid composites with shape memory alloys and piezoelectric thin layers -- 9.1 Introduction -- 9.2 Multiphysics behavior modeling and characterization -- 9.2.1 Modeling of the shape memory alloys thermomechanical behavior -- 9.2.2 Modeling of the ferroelectric and ferroelastic behaviors of piezoelectric materials -- 9.2.3 Modeling of the thermoelectromechanical response of hybrid shape memory alloys/piezo composites -- 9.3 Multilayer manufacturing and characterization -- 9.3.1 First devices -- 9.3.2 Processing of the shape memory alloys/poly(vinylidene fluoride-trifluoroethylene) hybrid composite -- 9.4 Finite element analysis of shape memory alloys/piezo composite response for energy harvesting -- 9.5 Harvester manufacturing, instrumentation, and performance analysis -- 9.5.1 Energy harvesting from hybrid composite (shape memory alloys/piezo) -- 9.5.2 Thermal-mechanical-electrical energy harvesting -- 9.5.3 Electrothermomechanical characterization bench -- 9.5.4 Electronic circuits for piezoelectric energy harvesting -- 9.6 Conclusion -- References -- 10 Designing piezo- and pyroelectric energy harvesters -- 10.1 Introduction -- 10.2 Piezoelectric nanogenerator.

10.2.1 Inorganic piezoelectric materials -- 10.2.1.1 Zinc oxide nanowires-based piezoelectric nanogenerators -- 10.2.1.2 Polycrystalline lead zirconate titanate-based piezoelectric nanogenerators -- 10.2.1.3 Composite-based materials-based piezoelectric nanogenerators -- 10.2.2 Organic piezoelectric materials -- 10.2.3 Biodegradable materials-based piezoelectric nanogenerators -- 10.3 Pyroelectric nanogenerator -- 10.3.1 The progress of pyroelectric nanogenerator -- 10.4 Coupled piezo- and pyroelectric nanogenerator -- 10.5 Conclusion and future outlook -- Acknowledgment -- Conflicts of interest -- References -- Index -- Back Cover.

There are no comments for this item.

Log in to your account to post a comment.