Normal view MARC view ISBD view

Additive friction stir deposition.

By: Yu, Hang.
Material type: materialTypeLabelBookSeries: Additive manufacturing materials and technologies.Publisher: Amsterdam, Netherlands ; Cambridge, MA : Elsevier, 2022Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128243954; 0128243953.Subject(s): Additive manufacturing | Additive manufacturingAdditional physical formats: No titleDDC classification: 621.988
Contents:
Front Cover -- Additive Friction Stir Deposition -- Copyright Page -- Contents -- Preface -- Book endorsement: Additive Friction Stir Deposition -- 1 Introduction -- 1.1 Additive manufacturing for metals -- 1.2 Solid-state metal additive manufacturing -- 1.3 Additive friction stir deposition -- 1.4 Organization of this book -- References -- 2 Process fundamentals -- 2.1 Elements of friction theory -- 2.2 Fundamentals of heat and mass transfer -- 2.2.1 Heat transfer -- 2.2.2 Mass transfer -- 2.3 Basic principle of additive friction stir deposition -- 2.4 Establishment of an integrated in situ monitoring system: real-time measurement of temperature, force, torque, and mate ... -- 2.5 Temperature evolution in the deposited material and substrate -- 2.5.1 Thermal history of the deposited materials -- 2.5.2 Dependence of thermal features on the processing conditions in additive friction stir deposition -- 2.5.3 Power law relationships of peak temperature and processing parameters -- 2.5.4 Temperature evolution of the substrate -- 2.6 Force and torque evolution -- 2.6.1 Multiple phases of force and torque evolution -- 2.6.2 Dependence of steady-state force and torque on processing conditions -- 2.7 In situ visualization of material rotation and flow -- 2.7.1 Footprint and material rotation -- 2.7.2 Contact state and sticking coefficient -- 2.8 Correlation of the material flow behavior to temperature, force, and torque evolution -- 2.8.1 Influences of the contact state and material flow on heat generation -- 2.8.2 Influences of the contact state and material flow on force and torque -- 2.8.3 Factors governing the contact state and material flow behavior -- 2.9 Summary -- References -- 3 Material flow phenomena -- 3.1 Plasticity and finite deformation theory -- 3.2 Elements of fluid mechanics.
3.3 Previous experimental studies on material flow in friction stir welding -- 3.4 Design of tracer experiments for material flow investigation in additive friction stir deposition -- 3.5 Flow path of the center volume of the feed material -- 3.5.1 Center tracer flow during initial material feeding -- 3.5.2 Center tracer flow during steady-state deposition -- 3.6 Flow path of the edge volume of the feed material -- 3.6.1 Edge tracer flow during initial material feeding -- 3.6.2 Edge tracer flow during steady-state deposition -- 3.7 Material deformation and flow at the interface -- 3.7.1 Surface and interface morphology -- 3.7.2 Interfacial mixing -- 3.8 Summary -- References -- 4 Dynamic microstructure evolution -- 4.1 Elements of microstructure evolution -- 4.2 Dynamic recrystallization mechanisms -- 4.2.1 Discontinuous dynamic recrystallization -- 4.2.2 Continuous dynamic recrystallization -- 4.3 Thermomechanical history in additive friction stir deposition -- 4.3.1 Stage A -- 4.3.2 Stage B -- 4.3.3 Stage C -- 4.4 Characteristics of the resulting microstructures by additive friction stir deposition -- 4.4.1 High stacking fault energy materials: Al and Mg -- 4.4.2 Low (to medium) stacking fault energy materials: Inconel 625 and 316L stainless steel -- 4.5 Dynamic microstructure evolution along the flow path of an Al-Cu alloy -- 4.5.1 Microstructure characterization along the flow path of the center tracer -- 4.5.2 Microstructure characterization along the flow path of the edge tracer -- 4.5.3 Quantification of the overall trend -- 4.6 Processing-microstructure linkages of Al-Mg-Si and Cu -- 4.6.1 Microstructure characterization of Al-Mg-Si printed at various conditions -- 4.6.2 Microstructure characterization of Cu printed at various conditions -- 4.6.3 Analysis of the microstructure evolution mechanisms and trends.
4.6.3.1 Origin of the different microstructure evolution mechanisms -- 4.6.3.2 Origin of the process-microstructure linkage in Al-Mg-Si -- 4.6.3.3 Origin of the process-microstructure linkage in Cu -- 4.6.3.4 Origin of the texture differences -- 4.7 Dynamic phase evolution -- 4.8 Summary -- References -- 5 Effects of tool geometry -- 5.1 A survey of tool effects in friction stir welding -- 5.2 Tool types and geometries for additive friction stir deposition -- 5.3 Effects of tool geometry on interface morphology -- 5.4 Effects of tool geometry on microstructure -- 5.5 Summary -- References -- 6 Beyond metals and alloys: additive friction stir deposition of metal matrix composites -- 6.1 Introduction to metal matrix composites -- 6.2 Current processing approaches to metal matrix composites -- 6.2.1 Bulk processing -- 6.2.1.1 Liquid-state processing: stir casting -- 6.2.1.2 Liquid-state processing: squeeze casting -- 6.2.1.3 Solid-state processing: powder metallurgy -- 6.2.2 Additive production -- 6.2.2.1 Powder bed fusion -- 6.2.2.2 Directed energy deposition -- 6.2.2.3 Sheet lamination -- 6.3 Additive friction stir deposition of metal matrix composites -- 6.3.1 Feeding strategy and printing principle -- 6.3.2 Potential benefits -- 6.4 Examples -- 6.4.1 Cu-ZrO2 printed using a composite feed-rod -- 6.4.2 Al-ZrO2, Al-SiC, and Cu-SiC composites printed by packing particles in the hollow feed-rod -- 6.4.3 Al-SiC printed by auger feeding -- 6.5 Limitations of this printing approach -- 6.5.1 Maximum volume fraction of reinforcement -- 6.5.2 Tool wear -- 6.6 Summary -- References -- 7 Mechanical properties of the printed materials -- 7.1 Elements of the mechanical behavior of materials -- 7.2 Tensile properties of the printed metals and alloys -- 7.2.1 Effects of precipitation strengthening -- 7.2.2 Effects of postprocess aging.
7.2.3 Effects of dislocation content -- 7.2.4 Effects of grain size -- 7.2.5 Two-phase alloys -- 7.2.6 Gradient of the mechanical properties -- 7.3 Fracture behavior -- 7.4 Fatigue behavior -- 7.5 Mechanical properties of bilayer structures -- 7.6 Mechanical properties of printed metal matrix composites -- 7.7 Summary -- References -- 8 Niche applications -- 8.1 Structural repair -- 8.1.1 Through-hole filling -- 8.1.2 Groove filling -- 8.1.3 Surface and divot repair -- 8.1.4 Fastener hole repair -- 8.2 Selective-area cladding on thin automotive sheet metals -- 8.2.1 Cladding quality -- 8.2.2 Thin substrate distortion -- 8.3 Recycling -- 8.3.1 Solid-state metal recycling background -- 8.3.2 Friction stirring for solid-state recycling -- 8.4 Large-scale additive manufacturing -- 8.5 Printing and repair under harsh conditions -- 8.6 Summary -- References -- 9 Future perspectives -- 9.1 In-depth understanding of the underlying physics -- 9.2 Material innovation -- 9.3 Incorporation of artificial intelligence -- 9.4 Summary -- References -- Index -- Back Cover.
    average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Additive Friction Stir Deposition -- Copyright Page -- Contents -- Preface -- Book endorsement: Additive Friction Stir Deposition -- 1 Introduction -- 1.1 Additive manufacturing for metals -- 1.2 Solid-state metal additive manufacturing -- 1.3 Additive friction stir deposition -- 1.4 Organization of this book -- References -- 2 Process fundamentals -- 2.1 Elements of friction theory -- 2.2 Fundamentals of heat and mass transfer -- 2.2.1 Heat transfer -- 2.2.2 Mass transfer -- 2.3 Basic principle of additive friction stir deposition -- 2.4 Establishment of an integrated in situ monitoring system: real-time measurement of temperature, force, torque, and mate ... -- 2.5 Temperature evolution in the deposited material and substrate -- 2.5.1 Thermal history of the deposited materials -- 2.5.2 Dependence of thermal features on the processing conditions in additive friction stir deposition -- 2.5.3 Power law relationships of peak temperature and processing parameters -- 2.5.4 Temperature evolution of the substrate -- 2.6 Force and torque evolution -- 2.6.1 Multiple phases of force and torque evolution -- 2.6.2 Dependence of steady-state force and torque on processing conditions -- 2.7 In situ visualization of material rotation and flow -- 2.7.1 Footprint and material rotation -- 2.7.2 Contact state and sticking coefficient -- 2.8 Correlation of the material flow behavior to temperature, force, and torque evolution -- 2.8.1 Influences of the contact state and material flow on heat generation -- 2.8.2 Influences of the contact state and material flow on force and torque -- 2.8.3 Factors governing the contact state and material flow behavior -- 2.9 Summary -- References -- 3 Material flow phenomena -- 3.1 Plasticity and finite deformation theory -- 3.2 Elements of fluid mechanics.

3.3 Previous experimental studies on material flow in friction stir welding -- 3.4 Design of tracer experiments for material flow investigation in additive friction stir deposition -- 3.5 Flow path of the center volume of the feed material -- 3.5.1 Center tracer flow during initial material feeding -- 3.5.2 Center tracer flow during steady-state deposition -- 3.6 Flow path of the edge volume of the feed material -- 3.6.1 Edge tracer flow during initial material feeding -- 3.6.2 Edge tracer flow during steady-state deposition -- 3.7 Material deformation and flow at the interface -- 3.7.1 Surface and interface morphology -- 3.7.2 Interfacial mixing -- 3.8 Summary -- References -- 4 Dynamic microstructure evolution -- 4.1 Elements of microstructure evolution -- 4.2 Dynamic recrystallization mechanisms -- 4.2.1 Discontinuous dynamic recrystallization -- 4.2.2 Continuous dynamic recrystallization -- 4.3 Thermomechanical history in additive friction stir deposition -- 4.3.1 Stage A -- 4.3.2 Stage B -- 4.3.3 Stage C -- 4.4 Characteristics of the resulting microstructures by additive friction stir deposition -- 4.4.1 High stacking fault energy materials: Al and Mg -- 4.4.2 Low (to medium) stacking fault energy materials: Inconel 625 and 316L stainless steel -- 4.5 Dynamic microstructure evolution along the flow path of an Al-Cu alloy -- 4.5.1 Microstructure characterization along the flow path of the center tracer -- 4.5.2 Microstructure characterization along the flow path of the edge tracer -- 4.5.3 Quantification of the overall trend -- 4.6 Processing-microstructure linkages of Al-Mg-Si and Cu -- 4.6.1 Microstructure characterization of Al-Mg-Si printed at various conditions -- 4.6.2 Microstructure characterization of Cu printed at various conditions -- 4.6.3 Analysis of the microstructure evolution mechanisms and trends.

4.6.3.1 Origin of the different microstructure evolution mechanisms -- 4.6.3.2 Origin of the process-microstructure linkage in Al-Mg-Si -- 4.6.3.3 Origin of the process-microstructure linkage in Cu -- 4.6.3.4 Origin of the texture differences -- 4.7 Dynamic phase evolution -- 4.8 Summary -- References -- 5 Effects of tool geometry -- 5.1 A survey of tool effects in friction stir welding -- 5.2 Tool types and geometries for additive friction stir deposition -- 5.3 Effects of tool geometry on interface morphology -- 5.4 Effects of tool geometry on microstructure -- 5.5 Summary -- References -- 6 Beyond metals and alloys: additive friction stir deposition of metal matrix composites -- 6.1 Introduction to metal matrix composites -- 6.2 Current processing approaches to metal matrix composites -- 6.2.1 Bulk processing -- 6.2.1.1 Liquid-state processing: stir casting -- 6.2.1.2 Liquid-state processing: squeeze casting -- 6.2.1.3 Solid-state processing: powder metallurgy -- 6.2.2 Additive production -- 6.2.2.1 Powder bed fusion -- 6.2.2.2 Directed energy deposition -- 6.2.2.3 Sheet lamination -- 6.3 Additive friction stir deposition of metal matrix composites -- 6.3.1 Feeding strategy and printing principle -- 6.3.2 Potential benefits -- 6.4 Examples -- 6.4.1 Cu-ZrO2 printed using a composite feed-rod -- 6.4.2 Al-ZrO2, Al-SiC, and Cu-SiC composites printed by packing particles in the hollow feed-rod -- 6.4.3 Al-SiC printed by auger feeding -- 6.5 Limitations of this printing approach -- 6.5.1 Maximum volume fraction of reinforcement -- 6.5.2 Tool wear -- 6.6 Summary -- References -- 7 Mechanical properties of the printed materials -- 7.1 Elements of the mechanical behavior of materials -- 7.2 Tensile properties of the printed metals and alloys -- 7.2.1 Effects of precipitation strengthening -- 7.2.2 Effects of postprocess aging.

7.2.3 Effects of dislocation content -- 7.2.4 Effects of grain size -- 7.2.5 Two-phase alloys -- 7.2.6 Gradient of the mechanical properties -- 7.3 Fracture behavior -- 7.4 Fatigue behavior -- 7.5 Mechanical properties of bilayer structures -- 7.6 Mechanical properties of printed metal matrix composites -- 7.7 Summary -- References -- 8 Niche applications -- 8.1 Structural repair -- 8.1.1 Through-hole filling -- 8.1.2 Groove filling -- 8.1.3 Surface and divot repair -- 8.1.4 Fastener hole repair -- 8.2 Selective-area cladding on thin automotive sheet metals -- 8.2.1 Cladding quality -- 8.2.2 Thin substrate distortion -- 8.3 Recycling -- 8.3.1 Solid-state metal recycling background -- 8.3.2 Friction stirring for solid-state recycling -- 8.4 Large-scale additive manufacturing -- 8.5 Printing and repair under harsh conditions -- 8.6 Summary -- References -- 9 Future perspectives -- 9.1 In-depth understanding of the underlying physics -- 9.2 Material innovation -- 9.3 Incorporation of artificial intelligence -- 9.4 Summary -- References -- Index -- Back Cover.

There are no comments for this item.

Log in to your account to post a comment.