Normal view MARC view ISBD view

Quantum entanglement engineering and applications / F.J. Duarte and T.S. Taylor.

By: Duarte, F. J. (Frank J.) [author.].
Contributor(s): Taylor, Travis S [author.] | Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 21: ; IOP series in coherent sources, quantum fundamentals, and applications: ; IOP ebooks2021 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]Description: 1 online resource (various pagings) : illustrations.Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750334075; 9780750334068.Subject(s): Quantum entanglement | Quantum theory -- Industrial applications | Optical physics | Optics and photonicsAdditional physical formats: Print version:: No titleDDC classification: 539.725 Online resources: Click here to access online Also available in print.
Contents:
1. Introduction -- 1.1. Introduction -- 1.2. Essentials of quantum mechanics -- 1.3. Ward's succinct perspectives -- 1.4. The philosophy and the physics of quantum entanglement -- 1.5. Quantum entanglement as a discipline -- 1.6. Quantum entanglement engineering and applications -- 1.7. Intent
2. Dirac's notation for quantum entanglement -- 2.1. Introduction -- 2.2. Dirac's bra ket notation -- 2.3. Dirac's notation in N-slit interferometers -- 2.4. Semi coherent interference -- 2.5. Expanded series of N-slit quantum interference probabilities -- 2.6. From quantum probabilities to measurable intensities -- 2.7. Dirac's identities -- 2.8. Quantum entanglement probability amplitudes for n = N = 2 -- 2.9. Quantum entanglement probability amplitude for n = N = 4 -- 2.10. Quantum entanglement probability amplitudes for n = N = 8 -- 2.11. Quantum entanglement probability amplitudes for n = N = 16 -- 2.12. Quantum entanglement probability amplitudes for n = N = 21, 22, 23, 24, ..., 2r -- 2.13. Quantum entanglement probability amplitudes for n = N = 3 -- 2.14. Quantum entanglement probability amplitudes for n = N = 6 -- 2.15. Beyond single quanta-pair quantum entanglement -- 2.16. Discussion
3. Indistinguishability -- 3.1. Introduction -- 3.2. Indistinguishability in quantum interference -- 3.3. Indistinguishability in Dirac's identities -- 3.4. Indistinguishability in quantum entanglement -- 3.5. Indistinguishability in quanta ensembles -- 3.6. Discussion
4. Quantum interferometry via Dirac's bra ket notation -- 4.1. Introduction -- 4.2. The N-slit interferometer -- 4.3. Interferometers configured by beam splitters -- 4.4. Beam-splitter matrices and Dirac's bra ket notation -- 4.5. Revisiting the single-beam splitter
5. Vectors, matrices, and tensors for quantum entanglement -- 5.1. Introduction -- 5.2. Vector basics -- 5.3. Vector products -- 5.4. Matrix algebra -- 5.5. The Pauli matrices -- 5.6. Unitary matrices -- 5.7. The tensor product
6. Five avenues to the probability amplitude of quantum entanglement -- 6.1. Introduction -- 6.2. Ward's heuristic derivation -- 6.3. Quantum entanglement from Feynman's two-state approach -- 6.4. Quantum entanglement from N-slit interference -- 6.5. Quantum entanglement from the Pauli matrices -- 6.6. Quantum entanglement from the Hadamard gate -- 6.7. Quantum interference or quantum entanglement?
7. Quantum entanglement in matrix notation -- 7.1. Introduction -- 7.2. Quantum entanglement probability amplitudes -- 7.3. From ket vectors to polarization matrices -- 7.4. The Pauli matrices and quantum entanglement -- 7.5. The Hadamard matrix -- 7.6. Optical matrices based on the probability amplitudes of quantum entanglement -- 7.7. Polarization rotators for quantum entanglement -- 7.8. Quantum operations with polarization rotators -- 7.9. Quantum operations with the Hadamard gate
8. Quantum entanglement applications -- 8.1. Introduction -- 8.2. Classical cryptography concepts -- 8.3. Quantum entanglement applications to cryptography -- 8.4. Quantum entanglement applications to teleportation -- 8.5. Quantum computing -- 8.6. Quantum entanglement applications to metrology -- 8.7. Overview
9. Space-to-space quantum communications -- 9.1. Introduction -- 9.2. Satellite engineering parameters -- 9.3. Beam divergence -- 9.4. Optical configuration for quantum satellite communications -- 9.5. Existing data from experiments on quantum satellite communications -- 9.6. Satellite networks and their dependence on entangled photon source characteristics -- 9.7. Sources for quantum entanglement communications -- 9.8. Outlook
10. Quantum entanglement and the interpretations of quantum mechanics -- 10.1. Introduction -- 10.2. Many alternative interpretations -- 10.3. Guidance from quantum titans -- 10.4. Hidden variable theories -- 10.5. A pragmatic perspective on the interpretations of quantum mechanics -- 10.6. Quantum principles -- 10.7. Quantum measurements -- 10.8. Is quantum entanglement the essence of quantum mechanics? -- 10.9. On the origin of the Dirac-Feynman principle -- 10.10. Quantum pragmatism free of paradoxes -- Appendix A. More on Dirac's notation : application to laser cavities and interference.
Abstract: Quantum entanglement (QE) is one of the most, if not the most, mysterious, and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fiber communications, in addition to teleportation and quantum computing, QE goes beyond fascination and into the pragmatic spheres of commerce and the military. With the growing population of engineers in need of a transparent, pragmatic, and direct introduction to QE and its applications, this book, the first of its kind, focuses on the practical mathematical tools necessary to handle QE and its requirements to design optical configurations for QE-based systems. Specific applications include satellite networks, space-to-space communications, quantum teleportation, and quantum computing.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 20210207"--Title page verso.

Includes bibliographical references and index.

1. Introduction -- 1.1. Introduction -- 1.2. Essentials of quantum mechanics -- 1.3. Ward's succinct perspectives -- 1.4. The philosophy and the physics of quantum entanglement -- 1.5. Quantum entanglement as a discipline -- 1.6. Quantum entanglement engineering and applications -- 1.7. Intent

2. Dirac's notation for quantum entanglement -- 2.1. Introduction -- 2.2. Dirac's bra ket notation -- 2.3. Dirac's notation in N-slit interferometers -- 2.4. Semi coherent interference -- 2.5. Expanded series of N-slit quantum interference probabilities -- 2.6. From quantum probabilities to measurable intensities -- 2.7. Dirac's identities -- 2.8. Quantum entanglement probability amplitudes for n = N = 2 -- 2.9. Quantum entanglement probability amplitude for n = N = 4 -- 2.10. Quantum entanglement probability amplitudes for n = N = 8 -- 2.11. Quantum entanglement probability amplitudes for n = N = 16 -- 2.12. Quantum entanglement probability amplitudes for n = N = 21, 22, 23, 24, ..., 2r -- 2.13. Quantum entanglement probability amplitudes for n = N = 3 -- 2.14. Quantum entanglement probability amplitudes for n = N = 6 -- 2.15. Beyond single quanta-pair quantum entanglement -- 2.16. Discussion

3. Indistinguishability -- 3.1. Introduction -- 3.2. Indistinguishability in quantum interference -- 3.3. Indistinguishability in Dirac's identities -- 3.4. Indistinguishability in quantum entanglement -- 3.5. Indistinguishability in quanta ensembles -- 3.6. Discussion

4. Quantum interferometry via Dirac's bra ket notation -- 4.1. Introduction -- 4.2. The N-slit interferometer -- 4.3. Interferometers configured by beam splitters -- 4.4. Beam-splitter matrices and Dirac's bra ket notation -- 4.5. Revisiting the single-beam splitter

5. Vectors, matrices, and tensors for quantum entanglement -- 5.1. Introduction -- 5.2. Vector basics -- 5.3. Vector products -- 5.4. Matrix algebra -- 5.5. The Pauli matrices -- 5.6. Unitary matrices -- 5.7. The tensor product

6. Five avenues to the probability amplitude of quantum entanglement -- 6.1. Introduction -- 6.2. Ward's heuristic derivation -- 6.3. Quantum entanglement from Feynman's two-state approach -- 6.4. Quantum entanglement from N-slit interference -- 6.5. Quantum entanglement from the Pauli matrices -- 6.6. Quantum entanglement from the Hadamard gate -- 6.7. Quantum interference or quantum entanglement?

7. Quantum entanglement in matrix notation -- 7.1. Introduction -- 7.2. Quantum entanglement probability amplitudes -- 7.3. From ket vectors to polarization matrices -- 7.4. The Pauli matrices and quantum entanglement -- 7.5. The Hadamard matrix -- 7.6. Optical matrices based on the probability amplitudes of quantum entanglement -- 7.7. Polarization rotators for quantum entanglement -- 7.8. Quantum operations with polarization rotators -- 7.9. Quantum operations with the Hadamard gate

8. Quantum entanglement applications -- 8.1. Introduction -- 8.2. Classical cryptography concepts -- 8.3. Quantum entanglement applications to cryptography -- 8.4. Quantum entanglement applications to teleportation -- 8.5. Quantum computing -- 8.6. Quantum entanglement applications to metrology -- 8.7. Overview

9. Space-to-space quantum communications -- 9.1. Introduction -- 9.2. Satellite engineering parameters -- 9.3. Beam divergence -- 9.4. Optical configuration for quantum satellite communications -- 9.5. Existing data from experiments on quantum satellite communications -- 9.6. Satellite networks and their dependence on entangled photon source characteristics -- 9.7. Sources for quantum entanglement communications -- 9.8. Outlook

10. Quantum entanglement and the interpretations of quantum mechanics -- 10.1. Introduction -- 10.2. Many alternative interpretations -- 10.3. Guidance from quantum titans -- 10.4. Hidden variable theories -- 10.5. A pragmatic perspective on the interpretations of quantum mechanics -- 10.6. Quantum principles -- 10.7. Quantum measurements -- 10.8. Is quantum entanglement the essence of quantum mechanics? -- 10.9. On the origin of the Dirac-Feynman principle -- 10.10. Quantum pragmatism free of paradoxes -- Appendix A. More on Dirac's notation : application to laser cavities and interference.

Quantum entanglement (QE) is one of the most, if not the most, mysterious, and yet most promising subjects of current physics. With applications in cryptographic space-to-space, space-to-earth, and fiber communications, in addition to teleportation and quantum computing, QE goes beyond fascination and into the pragmatic spheres of commerce and the military. With the growing population of engineers in need of a transparent, pragmatic, and direct introduction to QE and its applications, this book, the first of its kind, focuses on the practical mathematical tools necessary to handle QE and its requirements to design optical configurations for QE-based systems. Specific applications include satellite networks, space-to-space communications, quantum teleportation, and quantum computing.

Scientists, engineers, and graduate students working in quantum entanglement.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Dr. F.J. Duarte is a laser physicist based in Western New York, USA. He is the author/editor of 14 scholarly books including Dye Laser Principles, High-Power Dye Lasers, Tunable Laser Applications, and Tunable Lasers Handbook. He is sole author of Tunable Laser Optics, Quantum Optics for Engineers, and Fundamentals of Quantum Entanglement. He has received the Engineering Excellence Award (1995), 'for the invention of the N-slit laser interferometer,' and the David Richardson Medal (2016) 'for seminal contributions to the physics and technology of multiple-prism arrays for narrow-linewidth tunable laser oscillators and laser pulse compression' from the Optical Society. Dr. T.S. Taylor is Principal Scientist at the Quantum Entanglement and Space Technologies Laboratory, US Army Space and Missile Defense Command, Huntsville, Alabama. He is the author and co-author of numerous refereed publications and US patents. Dr Taylor is also the author of two scholarly books: Introduction to Rocket Science and Engineering and Introduction to Laser Science and Engineering.

Title from PDF title page (viewed on August 5, 2021).

There are no comments for this item.

Log in to your account to post a comment.