Normal view MARC view ISBD view

A multidisciplinary approach to quantum field theory. Volume 2, Advanced topics / Michael Ogilvie.

By: Ogilvie, Michael, 1953- [author.].
Contributor(s): Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 22: ; IOP ebooks2022 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]Description: 1 online resource (various pagings) : illustrations.Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750332316; 9780750332309.Subject(s): Quantum field theory | Particle & high-energy physics | SCIENCE / Physics / Quantum TheoryAdditional physical formats: Print version:: No titleDDC classification: 530.14/3 Online resources: Click here to access online Also available in print.
Contents:
1. Gauge theories -- 1.1. Introduction to quantum electrodynamics -- 1.2. Abelian gauge invariance -- 1.3. Perturbative calculations at tree level in QED -- 1.4. Renormalization of QED -- 1.5. Compact Lie groups -- 1.6. Non-Abelian gauge theories -- 1.7. The Faddeev-Popov ansatz and gauge fixing for non-Abelian gauge theories -- 1.8. The geometry of gauge fields -- 1.9. Gauge fields compared to gravity -- 1.10. The Feynman rules for non-Abelian gauge theories -- 1.11. The Higgs mechanism
2. The renormalization group -- 2.1. Introduction -- 2.2. The Ising model -- 2.3. The order parameter and Landau theory -- 2.4. Critical exponents -- 2.5. The real-space renormalization group -- 2.6. Euclidean field theory -- 2.7. Derivation of the renormalization group equations : [phi]4 -- 2.8. The Wilson-Fisher fixed point -- 2.9. The effective action -- 2.10. Background field method for scalar field theories -- 2.11. The background field method for gauge theories -- Appendix. Simulation and the Metropolis algorithm
3. The 1/N expansion -- 3.1. Introduction -- 3.2. Quantum mechanics -- 3.3. Vector models in quantum mechanics -- 3.4. Vector models in quantum field theory -- 3.5. Matrix models in the large-N limit
4. Solitons and instantons -- 4.1. Introduction -- 4.2. The [phi]4 kink in 1 + 1 dimensions -- 4.3. Flux tubes -- 4.4. Magnetic monopoles -- 4.5. Instantons -- 4.6. False vacuum decay
5. Anomalies -- 5.1. Introduction -- 5.2. Path integral treatment of anomalies -- 5.3. Anomaly cancellation in gauge theories -- 5.4. The [eta][prime] problem and the U(1)A anomaly in QCD
6. Field theory at nonzero temperature -- 6.1. Introduction -- 6.2. Partition functions and path integrals -- 6.3. Free fields and Matsubara frequencies -- 6.4. Evaluation of the T [not equal to] 0 scalar field effective potential -- 6.5. Symmetry restoration -- 6.6. Running couplings -- 6.7. Fermions -- 6.8. Equilibration in field theories.
Abstract: Quantum field theory is the theory of many-particle quantum systems. Just as quantum mechanics describes a single particle as both a particle and a wave, quantum field theory describes many-particle systems in terms of both particles and fields.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 20221201"--Title page verso.

Includes bibliographical references.

1. Gauge theories -- 1.1. Introduction to quantum electrodynamics -- 1.2. Abelian gauge invariance -- 1.3. Perturbative calculations at tree level in QED -- 1.4. Renormalization of QED -- 1.5. Compact Lie groups -- 1.6. Non-Abelian gauge theories -- 1.7. The Faddeev-Popov ansatz and gauge fixing for non-Abelian gauge theories -- 1.8. The geometry of gauge fields -- 1.9. Gauge fields compared to gravity -- 1.10. The Feynman rules for non-Abelian gauge theories -- 1.11. The Higgs mechanism

2. The renormalization group -- 2.1. Introduction -- 2.2. The Ising model -- 2.3. The order parameter and Landau theory -- 2.4. Critical exponents -- 2.5. The real-space renormalization group -- 2.6. Euclidean field theory -- 2.7. Derivation of the renormalization group equations : [phi]4 -- 2.8. The Wilson-Fisher fixed point -- 2.9. The effective action -- 2.10. Background field method for scalar field theories -- 2.11. The background field method for gauge theories -- Appendix. Simulation and the Metropolis algorithm

3. The 1/N expansion -- 3.1. Introduction -- 3.2. Quantum mechanics -- 3.3. Vector models in quantum mechanics -- 3.4. Vector models in quantum field theory -- 3.5. Matrix models in the large-N limit

4. Solitons and instantons -- 4.1. Introduction -- 4.2. The [phi]4 kink in 1 + 1 dimensions -- 4.3. Flux tubes -- 4.4. Magnetic monopoles -- 4.5. Instantons -- 4.6. False vacuum decay

5. Anomalies -- 5.1. Introduction -- 5.2. Path integral treatment of anomalies -- 5.3. Anomaly cancellation in gauge theories -- 5.4. The [eta][prime] problem and the U(1)A anomaly in QCD

6. Field theory at nonzero temperature -- 6.1. Introduction -- 6.2. Partition functions and path integrals -- 6.3. Free fields and Matsubara frequencies -- 6.4. Evaluation of the T [not equal to] 0 scalar field effective potential -- 6.5. Symmetry restoration -- 6.6. Running couplings -- 6.7. Fermions -- 6.8. Equilibration in field theories.

Quantum field theory is the theory of many-particle quantum systems. Just as quantum mechanics describes a single particle as both a particle and a wave, quantum field theory describes many-particle systems in terms of both particles and fields.

Graduate students studying particle physics, condensed matter.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Professor Michael C. Ogilvie is a member of the physics department at Washington University. Prior to his appointment at the university, he held postdoctoral appointments at Brookhaven National Laboratory and the University of Maryland. He received his PhD from Brown University. His research interests include lattice gauge theory, extreme QCD and the theory of phase transitions.

Title from PDF title page (viewed on December 5, 2022).

There are no comments for this item.

Log in to your account to post a comment.