Normal view MARC view ISBD view

Techniques for lithium isotope separation, laser cooling, and scattering / Ignacio E. Olivares, Patrick Carrazana.

By: Olivares, Ignacio E [author.].
Contributor(s): Carrazana, Patrick [author.] | Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 22: ; IOP series in coherent sources, quantum fundamentals, and applications: ; IOP ebooks2022 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]Description: 1 online resource (various pagings) : illustrations (some color).Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750338394; 9780750338387.Subject(s): Laser spectroscopy | Laser cooling | Optical physics | Optics and photonicsAdditional physical formats: Print version:: No titleDDC classification: 535.58 Online resources: Click here to access online Also available in print.
Contents:
1. History of our laser experiments -- 1.1. Laser isotope separation laboratory -- 1.2. Laser and optics laboratory -- 1.3. Teaching laboratory : Experimental Physics V -- 1.4. Advanced laboratory -- 1.5. Summary
2. Saturated absorption spectroscopy -- 2.1. Description of saturated absorption spectroscopy -- 2.2. Multi-level atoms -- 2.3. The saturated absorption spectrometer -- 2.4. Semiquantitative ideas at two-level atoms -- 2.5. Energy level diagram
3. Optical instrumentation and detection -- 3.1. Geometrical optics -- 3.2. Interference -- 3.3. Polarization of light -- 3.4. Linear polarizer and Malus law -- 3.5. The Brewster angle
4. Vapor generation and vacuum -- 4.1. Lithium isotope separation hardware -- 4.2. Preparing the vacuum for laser cooling
5. Diode laser characteristics -- 5.1. Littrow grating diode laser cavity -- 5.2. Principles of operation of the grazing-incidence grating diode laser cavity -- 5.3. Nd:YAG laser
6. Lithium Doppler-free absorption spectroscopy -- 6.1. Introduction -- 6.2. Experiment -- 6.3. Results -- 6.4. Conclusion
7. Lithium Doppler-limited absorption spectroscopy -- 7.1. Introduction -- 7.2. Background -- 7.3. Experiment -- 7.4. Results -- 7.5. Discussions and conclusions
8. Rubidium absorption spectroscopy -- 8.1. Introduction -- 8.2. Background -- 8.3. Experiment -- 8.4. Results -- 8.5. Discussion and conclusion -- 8.6. Transitions
9. Lithium resonance ionization spectroscopy -- 9.1. Introduction -- 9.2. Background -- 9.3. Experiment -- 9.4. Results -- 9.5. Discussion and conclusion
10. Lithium isotope separation -- 10.1. Introduction -- 10.2. Background -- 10.3. Lithium isotope separation experimental setup -- 10.4. Laser system -- 10.5. Isotope separation apparatus -- 10.6. Experimental overview -- 10.7. Results -- 10.8. Discussion and conclusion
11. Laser cooling -- 11.1. The pump and the probe laser -- 11.2. Energy level diagram-laser cooling -- 11.3. Finding the spectral lines for repumping and cooling laser -- 11.4. Description of the Pound-Drever-Hall method for frequency stability of the pump and probe lasers -- 11.5. Installing the MOT optics -- 11.6. Polarizing optics : left and right circulating light -- 11.7. Anti-Helmholtz coils : magneto optical trap -- 11.8. Observation of the cloud with NIR camera -- 11.9. Analog control of laser intensities with a Glan-Thompson polarizer -- 11.10. Results -- 11.11. Discussion
12. Mie scattering -- 12.1. Introduction -- 12.2. Theory -- 12.3. Experiment -- 12.4. Results -- 12.5. Discussion and conclusions
13. Thomson scattering -- 13.1. Introduction -- 13.2. Theory -- 13.3. Thomson scattering experiment -- 13.4. Results -- 13.5. Conclusion
14. Thomson scattering with impurities -- 14.1. Introduction -- 14.2. Different kind of ions in plasma -- 14.3. Experiment -- 14.4. Results : Thomson scattering spectra with impurity ions -- 14.5. Conclusion.
Abstract: This book explores the basics of how to construct a laser isotope separation experiment, as well as a laser cooling magneto optical trap. It reviews the basic optics, quantum mechanics and the atom-field equations and rate equations that include the transition probabilities for lithium and rubidium. The book includes a full description of different diode laser cavities and the methods used to assemble and tune lasers. Throughout the work detailed step-by-step thorough explanations of these experimental techniques are provided. The key readership includes upper level undergraduate and graduate level students on courses such as modern techniques in the experimental physics laboratory. Part of IOP Series in Coherent Sources, Quantum Fundamentals, and Applications.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 20220901"--Title page verso.

Includes bibliographical references.

1. History of our laser experiments -- 1.1. Laser isotope separation laboratory -- 1.2. Laser and optics laboratory -- 1.3. Teaching laboratory : Experimental Physics V -- 1.4. Advanced laboratory -- 1.5. Summary

2. Saturated absorption spectroscopy -- 2.1. Description of saturated absorption spectroscopy -- 2.2. Multi-level atoms -- 2.3. The saturated absorption spectrometer -- 2.4. Semiquantitative ideas at two-level atoms -- 2.5. Energy level diagram

3. Optical instrumentation and detection -- 3.1. Geometrical optics -- 3.2. Interference -- 3.3. Polarization of light -- 3.4. Linear polarizer and Malus law -- 3.5. The Brewster angle

4. Vapor generation and vacuum -- 4.1. Lithium isotope separation hardware -- 4.2. Preparing the vacuum for laser cooling

5. Diode laser characteristics -- 5.1. Littrow grating diode laser cavity -- 5.2. Principles of operation of the grazing-incidence grating diode laser cavity -- 5.3. Nd:YAG laser

6. Lithium Doppler-free absorption spectroscopy -- 6.1. Introduction -- 6.2. Experiment -- 6.3. Results -- 6.4. Conclusion

7. Lithium Doppler-limited absorption spectroscopy -- 7.1. Introduction -- 7.2. Background -- 7.3. Experiment -- 7.4. Results -- 7.5. Discussions and conclusions

8. Rubidium absorption spectroscopy -- 8.1. Introduction -- 8.2. Background -- 8.3. Experiment -- 8.4. Results -- 8.5. Discussion and conclusion -- 8.6. Transitions

9. Lithium resonance ionization spectroscopy -- 9.1. Introduction -- 9.2. Background -- 9.3. Experiment -- 9.4. Results -- 9.5. Discussion and conclusion

10. Lithium isotope separation -- 10.1. Introduction -- 10.2. Background -- 10.3. Lithium isotope separation experimental setup -- 10.4. Laser system -- 10.5. Isotope separation apparatus -- 10.6. Experimental overview -- 10.7. Results -- 10.8. Discussion and conclusion

11. Laser cooling -- 11.1. The pump and the probe laser -- 11.2. Energy level diagram-laser cooling -- 11.3. Finding the spectral lines for repumping and cooling laser -- 11.4. Description of the Pound-Drever-Hall method for frequency stability of the pump and probe lasers -- 11.5. Installing the MOT optics -- 11.6. Polarizing optics : left and right circulating light -- 11.7. Anti-Helmholtz coils : magneto optical trap -- 11.8. Observation of the cloud with NIR camera -- 11.9. Analog control of laser intensities with a Glan-Thompson polarizer -- 11.10. Results -- 11.11. Discussion

12. Mie scattering -- 12.1. Introduction -- 12.2. Theory -- 12.3. Experiment -- 12.4. Results -- 12.5. Discussion and conclusions

13. Thomson scattering -- 13.1. Introduction -- 13.2. Theory -- 13.3. Thomson scattering experiment -- 13.4. Results -- 13.5. Conclusion

14. Thomson scattering with impurities -- 14.1. Introduction -- 14.2. Different kind of ions in plasma -- 14.3. Experiment -- 14.4. Results : Thomson scattering spectra with impurity ions -- 14.5. Conclusion.

This book explores the basics of how to construct a laser isotope separation experiment, as well as a laser cooling magneto optical trap. It reviews the basic optics, quantum mechanics and the atom-field equations and rate equations that include the transition probabilities for lithium and rubidium. The book includes a full description of different diode laser cavities and the methods used to assemble and tune lasers. Throughout the work detailed step-by-step thorough explanations of these experimental techniques are provided. The key readership includes upper level undergraduate and graduate level students on courses such as modern techniques in the experimental physics laboratory. Part of IOP Series in Coherent Sources, Quantum Fundamentals, and Applications.

Upper level undergraduate and graduate level students. Courses such as modern techniques in the experimental physics laboratory.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Professor Ignacio E Olivares is a member of the Physics Department at Universidad de Santiago de Chile. He is a recognized authority in the field and has published pioneering papers on the use of diode lasers in Lithium isotope separation. Dr Patrick Carrazana gained his Masters and Doctorate in theoretical quantum optics in the United States. For approximately twenty years Dr Carrazana has worked in general relativity with a special interest in problems associated with the early Universe.

Title from PDF title page (viewed on October 5, 2022).

There are no comments for this item.

Log in to your account to post a comment.