Normal view MARC view ISBD view

Boolean Differential Equations [electronic resource] / by Bernd Steinbach, Christian Posthoff.

By: Steinbach, Bernd [author.].
Contributor(s): Posthoff, Christian [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Synthesis Lectures on Digital Circuits & Systems: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2013Edition: 1st ed. 2013.Description: XII, 146 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783031798610.Subject(s): Engineering | Electronic circuits | Control engineering | Robotics | Automation | Computers | Technology and Engineering | Electronic Circuits and Systems | Control, Robotics, Automation | Computer HardwareAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 620 Online resources: Click here to access online
Contents:
Basics of the Binary Boolean Algebra -- Summary of the Boolean Differential Calculus -- Boolean Differential Equations -- Solutions of the Exercises -- Bibliography -- Authors' Biographies -- Index.
In: Springer Nature eBookSummary: The Boolean Differential Calculus (BDC) is a very powerful theory that extends the structure of a Boolean Algebra significantly. Based on a small number of definitions, many theorems have been proven. The available operations have been efficiently implemented in several software packages. There is a very wide field of applications. While a Boolean Algebra is focused on values of logic functions, the BDC allows the evaluation of changes of function values. Such changes can be explored for pairs of function values as well as for whole subspaces. Due to the same basic data structures, the BDC can be applied to any task described by logic functions and equations together with the Boolean Algebra. The BDC can be widely used for the analysis, synthesis, and testing of digital circuits. Generally speaking, a Boolean differential equation (BDE) is an equation in which elements of the BDC appear. It includes variables, functions, and derivative operations of these functions. The solution of such a BDE is a set of Boolean functions. This is a significant extension of Boolean equations, which have sets of Boolean vectors as solutions. In the simplest BDE a derivative operation of the BDC on the left-hand side is equal to a logic function on the right-hand side. The solution of such a simple BDE means to execute an operation which is inverse to the given derivative. BDEs can be applied in the same fields as the BDC, however, their possibility to express sets of Boolean functions extends the application field significantly.
    average rating: 0.0 (0 votes)
No physical items for this record

Basics of the Binary Boolean Algebra -- Summary of the Boolean Differential Calculus -- Boolean Differential Equations -- Solutions of the Exercises -- Bibliography -- Authors' Biographies -- Index.

The Boolean Differential Calculus (BDC) is a very powerful theory that extends the structure of a Boolean Algebra significantly. Based on a small number of definitions, many theorems have been proven. The available operations have been efficiently implemented in several software packages. There is a very wide field of applications. While a Boolean Algebra is focused on values of logic functions, the BDC allows the evaluation of changes of function values. Such changes can be explored for pairs of function values as well as for whole subspaces. Due to the same basic data structures, the BDC can be applied to any task described by logic functions and equations together with the Boolean Algebra. The BDC can be widely used for the analysis, synthesis, and testing of digital circuits. Generally speaking, a Boolean differential equation (BDE) is an equation in which elements of the BDC appear. It includes variables, functions, and derivative operations of these functions. The solution of such a BDE is a set of Boolean functions. This is a significant extension of Boolean equations, which have sets of Boolean vectors as solutions. In the simplest BDE a derivative operation of the BDC on the left-hand side is equal to a logic function on the right-hand side. The solution of such a simple BDE means to execute an operation which is inverse to the given derivative. BDEs can be applied in the same fields as the BDC, however, their possibility to express sets of Boolean functions extends the application field significantly.

There are no comments for this item.

Log in to your account to post a comment.