Scalable input/output : achieving system balance / edited by Daniel A. Reed. - 1 PDF (xv, 274 pages) : illustrations. - Scientific and engineering computation . - Scientific and engineering computation. .

Includes bibliographical references.

Restricted to subscribers or individual electronic text purchasers.

As we enter the "decade of data," the disparity between the vast amount of data storage capacity (measurable in terabytes and petabytes) and the bandwidth available for accessing it has created an input/output bottleneck that is proving to be a major constraint on the effective use of scientific data for research. Scalable Input/Output is a summary of the major research results of the Scalable I/O Initiative, launched by Paul Messina, then Director of the Center for Advanced Computing Research at the California Institute of Technology, to explore software and algorithmic solutions to the I/O imbalance. The contributors explore techniques for I/O optimization, including: I/O characterization to understand application and system I/O patterns; system checkpointing strategies; collective I/O and parallel database support for scientific applications; parallel I/O libraries and strategies for file striping, prefetching, and write behind; compilation strategies for out-of-core data access; scheduling and shared virtual memory alternatives; network support for low-latency data transfer; and parallel I/O application programming interfaces.




Mode of access: World Wide Web

9780262287869


Memory management (Computer science)
Parallel computers.
Computer input-output equipment.


Electronic books.

TK7887.5 / .S27 2004eb