Gonz�alez-Acu�ana, Rafael G.,

Optical path theory : fundamentals to freeform adaptive optics / Fundamentals to freeform adaptive optics. Rafael G. Gonz�alez-Acu�ana, H�ector A. Chaparro-Romo. - 1 online resource (various pagings) : illustrations (some color). - [IOP release $release] IOP series in emerging technologies in optics and photonics IOP ebooks. [2022 collection] . - IOP (Series). Release 22. IOP series in emerging technologies in optics and photonics. IOP ebooks. 2022 collection. .

"Version: 20220601"--Title page verso.

Includes bibliographical references.

part I. Introduction to optical path theory. 1. The path of light -- 1.1. Purpose and introduction to this treatise -- 1.2. The optical path and Fermat's principle -- 1.3. The law of reflection -- 1.4. The law of refraction -- 1.5. The vector form of Snell's law -- 1.6. The wavefront and the Malus-Dupin theorem -- 1.7. Optical path difference and phase difference -- 1.8. Stigmatism and aberrated wavefronts -- 1.9. Adaptive optics -- 1.10. Optical testing -- 1.11. End notes part II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces -- 2.1. The crux of adaptive optics -- 2.2. General equation for deformable mirrors for images at a finite distance -- 2.3. The eikonal, the wavefront, and ray tracing -- 2.4. Mathematica code -- 2.5. Examples -- 2.6. The general equation for deformable mirrors for images at infinity -- 2.7. The eikonal, the wavefront, and ray tracing -- 2.8. Mathematica code -- 2.9. Examples -- 2.10. End notes 3. General dioptric stigmatic surfaces -- 3.1. A more general solution than Cartesian ovals -- 3.2. General equation for stigmatic surfaces for images at finite distances -- 3.3. The wavefronts of images at finite distances -- 3.4. Mathematica code -- 3.5. Examples -- 3.6. The general equation for stigmatic surfaces for images at infinity -- 3.7. The wavefronts of images at infinity -- 3.8. Mathematica code -- 3.9. Examples -- 3.10. End notes 4. The aspheric transfer-function lens -- 4.1. Transfer functions -- 4.2. Mathematical model of the planar transfer-function lens -- 4.3. Ray tracing light passing through the transfer-function lens -- 4.4. Mathematica code -- 4.5. Examples -- 4.6. End notes 5. General equation for the aspheric wavefront generator lens -- 5.1. Introduction -- 5.2. Mathematical model for adaptive optics for finite images -- 5.3. The wavefront generator lens for images at finite distances -- 5.4. Mathematica code -- 5.5. Examples -- 5.6. Mathematical model for wavefront generator lenses for images at infinity -- 5.7. Wavefront of the wavefront generator lens for images at infinity -- 5.8. Mathematica code -- 5.9. Examples -- 5.10. End notes part III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems -- 6.1. The crux of adaptive optics -- 6.2. The general formula for freeform deformable mirrors for images at finite distances -- 6.3. The wavefront for finite images -- 6.4. Mathematica code -- 6.5. Examples -- 6.6. The crux of adaptive optics -- 6.7. The eikonal of the crux of adaptive optics -- 6.8. Mathematica code -- 6.9. Examples -- 6.10. End notes 7. General freeform dioptric stigmatic surfaces -- 7.1. Introduction -- 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances -- 7.3. The wavefronts of images at finite distances -- 7.4. Mathematica -- 7.5. Examples -- 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity -- 7.7. The wavefront and the collimated output rays -- 7.8. Mathematica code -- 7.9. Examples -- 7.10. End notes 8. The freeform transfer function lens -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Ray tracing of light passing through the transfer function lens -- 8.4. Mathematica code -- 8.5. Examples -- 8.6. End notes 9. General equation of the freeform wavefront generator lens -- 9.1. Introduction -- 9.2. Mathematical model for freeform wavefront generator lenses -- 9.3. The wavefront produced by the wavefront generator lens for finite images -- 9.4. Mathematica code -- 9.5. Examples -- 9.6. End notes.

This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2).

Optical engineers, academics in optics and physics.




Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.


Rafael G. Gonz�alez-Acu�ana studied industrial physics engineering at the Tecnol�ogico de Monterrey gaining a master's degree in optomechatronics at the Optics Research Center, A.C., and studied his PhD at the Tecnol�ogico de Monterrey. H�ector A Chaparro-Romo, Electronic Engineer with Master's studies in Computer Science specialised in scientific computation and years of experience in optics research and applications, he is co-author of the solution to the problem of designing bi-aspheric singlet lenses free of spherical aberration.

9780750347051 9780750347044

10.1088/978-0-7503-4705-1 doi


Optics, Adaptive.
Optical physics.
Optics and photonics.

TA1522 / .G666 2022eb

621.36/9