Normal view MARC view ISBD view

Fundamentals of quantum entanglement / F.J. Duarte.

By: Duarte, F. J. (Frank J.) [author.].
Contributor(s): Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 22: ; IOP series in coherent sources, quantum fundamentals, and applications: ; IOP ebooks2022 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]Edition: Second edition.Description: 1 online resource (various pagings) : illustrations (some color).Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750352680; 9780750352697.Subject(s): Quantum entanglement | Optical physics | Quantum scienceAdditional physical formats: Print version:: No titleDDC classification: 539.725 Online resources: Click here to access online Also available in print.
Contents:
1. Introduction -- 1.1. Introduction -- 1.2. Foundations of quantum mechanics -- 1.3. Ward's observations -- 1.4. History of quantum entanglement -- 1.5. The field of quantum entanglement -- 1.6. Fundamentals of quantum entanglement -- 1.7. Intent
2. Dirac's physics -- 2.1. Introduction -- 2.2. Dirac's pair theory -- 2.3. Dirac's notation -- 2.4. Dirac's notation in N-slit interferometers -- 2.5. Expanded series of N-slit quantum interference probabilities -- 2.6. The interferometric probability in 2D and 3D -- 2.7. Semi-coherent interference -- 2.8. From quantum probabilities to measurable intensities -- 2.9. Interferometric calculations and quantum coherence -- 2.10. Dirac's identities
3. The Einstein-Podolsky-Rosen (EPR) paper -- 3.1. Introduction -- 3.2. EPR's doubts on quantum mechanics -- 3.3. Transparent resolution of the EPR 'paradox'
4. The Schr�odinger papers -- 4.1. Introduction -- 4.2. The first Schr�odinger paper -- 4.3. The second Schr�odinger paper
5. Wheeler's paper -- 5.1. Introduction -- 5.2. Wheeler's paper significance to quantum theory -- 5.3. Wheeler's paper significance to quantum experiments -- 5.4. A theoretical opportunity
6. The probability amplitude for quantum entanglement -- 6.1. Introduction -- 6.2. The Pryce-Ward paper -- 6.3. Ward's doctoral thesis -- 6.4. Summary
7. The quantum entanglement experiment -- 7.1. Introduction -- 7.2. The quantum entanglement experiment -- 7.3. Historical notes
8. The annihilation quantum entanglement experiments -- 8.1. Introduction -- 8.2. The first three quantum entanglement experiments -- 8.3. Further significance of the annihilation experiments
9. The Bohm and Aharonov paper -- 9.1. Introduction -- 9.2. Significance to the development of quantum entanglement research -- 9.3. Philosophy and physics
10. Bell's theorem -- 10.1. Introduction -- 10.2. von Neumann's -- 10.3. Bell's theorem or Bell's inequalities -- 10.4. Example -- 10.5. An additional perspective on Bell's theorem -- 10.6. More philosophy and physics
11. Feynman's Hamiltonians -- 11.1. Introduction -- 11.2. Probability amplitudes via Hamiltonians �a la Feynman -- 11.3. Arrival to quantum entanglement probability amplitudes -- 11.4. Hyperfine splitting -- 11.5. Discussion
12. The second Wu quantum entanglement experiment -- 12.1. Introduction -- 12.2. Salient features -- 12.3. Bell's theorem and hidden variables
13. The hidden variable theory experiments -- 13.1. Introduction -- 13.2. Testing for local hidden variable theories -- 13.3. Early optical experiment -- 13.4. Observations and discussion
14. The optical quantum entanglement experiments -- 14.1. Introduction -- 14.2. The Aspect experiments -- 14.3. Observations and discussion
15. The quantum entanglement probability amplitude 1947-1992 -- 15.1. Introduction -- 15.2. The quantum entanglement probability amplitude 1947-1992 -- 15.3. Observations and discussion
16. The GHZ probability amplitudes -- 16.1. Introduction -- 16.2. The GHZ probability amplitudes -- 16.3. Observations and discussion
17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2 -- 17.1. Introduction -- 17.2. The meaning of the Dirac-Feynman probability amplitude -- 17.3. The derivation of the quantum entanglement probability amplitude -- 17.4. Identical states of polarization -- 17.5. Beyond single quanta-pair quantum entanglement -- 17.6. Discussion
18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 21, 22, 23, 24 ... 2r -- 18.1. Introduction -- 18.2. The quantum entanglement probability amplitude for n = N = 4 -- 18.3. The quantum entanglement probability amplitude for n = N = 8 -- 18.4. The quantum entanglement probability amplitude for n = N = 16 -- 18.5. The quantum entanglement probability amplitude for n = N = 21, 22, 23, 24, ... 2r -- 18.6. Discussion
19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6 -- 19.1. Introduction -- 19.2. The quantum entanglement probability amplitude for n = N = 3 -- 19.3. The quantum entanglement probability amplitude for n = N = 6 -- 19.4. Discussion
20. Quantum entanglement at n = 1 and N = 2 -- 20.1. Introduction -- 20.2. Reversibility : from entanglement to interference -- 20.3. Schematics -- 20.4. Experimental and theoretical perspectives -- 20.5. Interference for N slits and n = 1
21. Quantum entanglement probability amplitudes applied to Bell's theorem -- 21.1. Introduction -- 21.2. Probability amplitudes -- 21.3. Quantum polarization -- 21.4. Quantum probabilities and Bell's theorem -- 21.5. Application to Bell's theorem -- 21.6. All-quantum approach -- 21.7. Discussion
22. Quantum entanglement via matrix notation -- 22.1. Introduction -- 22.2. The probability amplitudes of quantum entanglement -- 22.3. Dirac's ket vectors and Pauli matrices -- 22.4. Quantum entanglement in Pauli matrix notation -- 22.5. Quantum entanglement and the Hadamard gate -- 22.6. Complete set of matrices derived from the probability amplitudes of quantum entanglement -- 22.7. Polarization rotators for quantum entanglement -- 22.8. Quantum mathematics with polarization rotators -- 22.9. Quantum mathematics with the Hadamard gate -- 22.10. Interconnectivity in quantum mechanics
23. Cryptography via quantum entanglement -- 23.1. Introduction -- 23.2. Measurement protocol based on Bell's theorem -- 23.3. All-quantum measurement protocol
24. Quantum entanglement and teleportation -- 24.1. Introduction -- 24.2. The mechanics of teleportation -- 24.3. Technology
25. Quantum entanglement and quantum computing -- 25.1. Introduction -- 25.2. Entropy -- 25.3. Qbits -- 25.4. Quantum entanglement and Pauli matrices -- 25.5. Pauli matrices and quantum entanglement -- 25.6. Quantum gates -- 25.7. The Hadamard matrix and quantum entanglement -- 25.8. Multiple entangled states -- 25.9. Technology
26. Space-to-space and space-to-Earth communications via quantum entanglement -- 26.1. Introduction -- 26.2. Space-to-space configurations -- 26.3. Experiments -- 26.4. Further horizons
27. Space-to-space quantum interferometric communications -- 27.1. Introduction -- 27.2. The generalized N-slit quantum interference equations -- 27.3. The generation and transmission of interferometric characters -- 27.4. The inherent quantum security mechanism -- 27.5. Discussion
28. Quanta pair sources for quantum entanglement experiments -- 28.1. Introduction -- 28.2. Positron-electron annihilation -- 28.3. Atomic Ca emission -- 28.4. Type I spontaneous parametric down-conversion -- 28.5. Type II spontaneous parametric down-conversion -- 28.6. Quantum description of parametric down-conversion -- 28.7. Alternative quantum pair sources -- 28.8. Further horizons
29. Quantum interferometric principles -- 29.1. Introduction -- 29.2. Fundamental principles of quantum mechanics -- 29.3. Nonlocality of the photon -- 29.4. Indistinguishability and Dirac's identities -- 29.5. Quantum measurements -- 29.6. Quantum entanglement at the foundations of quantum mechanics -- 29.7. On the origin of the Dirac-Feynman principle -- 29.8. Discussion
30. On the interpretation of quantum mechanics -- 30.1. Introduction -- 30.2. Philosophical aspects of quantum entanglement -- 30.3. Quantum critical -- 30.4. Conceptual 'problems' in quantum mechanics -- 30.5. Quantum luminaries -- 30.6. The pragmatic perspective -- 30.7. The Dirac-Feynman-Lamb doctrine -- 30.8. The all-important probability amplitude -- 30.9. The quantumness derived from the nonlocality of the photon -- 30.10. The best interpretation of quantum mechanics -- 30.11. Discussion
Apppendix A. Revisiting the Pryce-Ward probability amplitude for quantum entanglement -- Apppendix B. Classical and quantum interference -- Apppendix C. Interferometers and their probability amplitudes -- Apppendix D. Polarization rotators for quantum entanglement -- Apppendix E. Vectors, vector products, matrices, and tensors for quantum entanglement -- Apppendix F. Trigonometric identities -- Apppendix G. More on quantum notation -- Apppendix H. From quantum principles to classical optics -- Apppendix I. Introduction to complex conjugates and Hamilton's quaternions -- Apppendix J. Some open ended quantum questions.
Abstract: Quantum entanglement (QE) has rapidly become a subject of great interest in academia, industry, and government research institutions. This book builds on the first edition of Fundamentals of Quantum Entanglement to provide a transparent and more insightful introduction for graduate students, scientists, and engineers. It is also a highly useful education tool for those practitioners that were not aware of the physical origin of quantum entanglement: the Dirac-Wheeler-Pryce-Ward physics. The new edition includes an expansion on topics such as quantum entropy and quantum time. The book provides a direct, practical, and transparent introduction to the principles and physics of quantum entanglement. It does so whilst utilizing an interferometric approach based on Dirac-Feynman superposition probability amplitudes. Part of IOP Series in Coherent Sources, Quantum Fundamentals, and Applications.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 20220901"--Title page verso.

Includes bibliographical references and index.

1. Introduction -- 1.1. Introduction -- 1.2. Foundations of quantum mechanics -- 1.3. Ward's observations -- 1.4. History of quantum entanglement -- 1.5. The field of quantum entanglement -- 1.6. Fundamentals of quantum entanglement -- 1.7. Intent

2. Dirac's physics -- 2.1. Introduction -- 2.2. Dirac's pair theory -- 2.3. Dirac's notation -- 2.4. Dirac's notation in N-slit interferometers -- 2.5. Expanded series of N-slit quantum interference probabilities -- 2.6. The interferometric probability in 2D and 3D -- 2.7. Semi-coherent interference -- 2.8. From quantum probabilities to measurable intensities -- 2.9. Interferometric calculations and quantum coherence -- 2.10. Dirac's identities

3. The Einstein-Podolsky-Rosen (EPR) paper -- 3.1. Introduction -- 3.2. EPR's doubts on quantum mechanics -- 3.3. Transparent resolution of the EPR 'paradox'

4. The Schr�odinger papers -- 4.1. Introduction -- 4.2. The first Schr�odinger paper -- 4.3. The second Schr�odinger paper

5. Wheeler's paper -- 5.1. Introduction -- 5.2. Wheeler's paper significance to quantum theory -- 5.3. Wheeler's paper significance to quantum experiments -- 5.4. A theoretical opportunity

6. The probability amplitude for quantum entanglement -- 6.1. Introduction -- 6.2. The Pryce-Ward paper -- 6.3. Ward's doctoral thesis -- 6.4. Summary

7. The quantum entanglement experiment -- 7.1. Introduction -- 7.2. The quantum entanglement experiment -- 7.3. Historical notes

8. The annihilation quantum entanglement experiments -- 8.1. Introduction -- 8.2. The first three quantum entanglement experiments -- 8.3. Further significance of the annihilation experiments

9. The Bohm and Aharonov paper -- 9.1. Introduction -- 9.2. Significance to the development of quantum entanglement research -- 9.3. Philosophy and physics

10. Bell's theorem -- 10.1. Introduction -- 10.2. von Neumann's -- 10.3. Bell's theorem or Bell's inequalities -- 10.4. Example -- 10.5. An additional perspective on Bell's theorem -- 10.6. More philosophy and physics

11. Feynman's Hamiltonians -- 11.1. Introduction -- 11.2. Probability amplitudes via Hamiltonians �a la Feynman -- 11.3. Arrival to quantum entanglement probability amplitudes -- 11.4. Hyperfine splitting -- 11.5. Discussion

12. The second Wu quantum entanglement experiment -- 12.1. Introduction -- 12.2. Salient features -- 12.3. Bell's theorem and hidden variables

13. The hidden variable theory experiments -- 13.1. Introduction -- 13.2. Testing for local hidden variable theories -- 13.3. Early optical experiment -- 13.4. Observations and discussion

14. The optical quantum entanglement experiments -- 14.1. Introduction -- 14.2. The Aspect experiments -- 14.3. Observations and discussion

15. The quantum entanglement probability amplitude 1947-1992 -- 15.1. Introduction -- 15.2. The quantum entanglement probability amplitude 1947-1992 -- 15.3. Observations and discussion

16. The GHZ probability amplitudes -- 16.1. Introduction -- 16.2. The GHZ probability amplitudes -- 16.3. Observations and discussion

17. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 2 -- 17.1. Introduction -- 17.2. The meaning of the Dirac-Feynman probability amplitude -- 17.3. The derivation of the quantum entanglement probability amplitude -- 17.4. Identical states of polarization -- 17.5. Beyond single quanta-pair quantum entanglement -- 17.6. Discussion

18. The interferometric derivation of the quantum entanglement probability amplitude for n = N = 21, 22, 23, 24 ... 2r -- 18.1. Introduction -- 18.2. The quantum entanglement probability amplitude for n = N = 4 -- 18.3. The quantum entanglement probability amplitude for n = N = 8 -- 18.4. The quantum entanglement probability amplitude for n = N = 16 -- 18.5. The quantum entanglement probability amplitude for n = N = 21, 22, 23, 24, ... 2r -- 18.6. Discussion

19. The interferometric derivation of the quantum entanglement probability amplitudes for n = N = 3, 6 -- 19.1. Introduction -- 19.2. The quantum entanglement probability amplitude for n = N = 3 -- 19.3. The quantum entanglement probability amplitude for n = N = 6 -- 19.4. Discussion

20. Quantum entanglement at n = 1 and N = 2 -- 20.1. Introduction -- 20.2. Reversibility : from entanglement to interference -- 20.3. Schematics -- 20.4. Experimental and theoretical perspectives -- 20.5. Interference for N slits and n = 1

21. Quantum entanglement probability amplitudes applied to Bell's theorem -- 21.1. Introduction -- 21.2. Probability amplitudes -- 21.3. Quantum polarization -- 21.4. Quantum probabilities and Bell's theorem -- 21.5. Application to Bell's theorem -- 21.6. All-quantum approach -- 21.7. Discussion

22. Quantum entanglement via matrix notation -- 22.1. Introduction -- 22.2. The probability amplitudes of quantum entanglement -- 22.3. Dirac's ket vectors and Pauli matrices -- 22.4. Quantum entanglement in Pauli matrix notation -- 22.5. Quantum entanglement and the Hadamard gate -- 22.6. Complete set of matrices derived from the probability amplitudes of quantum entanglement -- 22.7. Polarization rotators for quantum entanglement -- 22.8. Quantum mathematics with polarization rotators -- 22.9. Quantum mathematics with the Hadamard gate -- 22.10. Interconnectivity in quantum mechanics

23. Cryptography via quantum entanglement -- 23.1. Introduction -- 23.2. Measurement protocol based on Bell's theorem -- 23.3. All-quantum measurement protocol

24. Quantum entanglement and teleportation -- 24.1. Introduction -- 24.2. The mechanics of teleportation -- 24.3. Technology

25. Quantum entanglement and quantum computing -- 25.1. Introduction -- 25.2. Entropy -- 25.3. Qbits -- 25.4. Quantum entanglement and Pauli matrices -- 25.5. Pauli matrices and quantum entanglement -- 25.6. Quantum gates -- 25.7. The Hadamard matrix and quantum entanglement -- 25.8. Multiple entangled states -- 25.9. Technology

26. Space-to-space and space-to-Earth communications via quantum entanglement -- 26.1. Introduction -- 26.2. Space-to-space configurations -- 26.3. Experiments -- 26.4. Further horizons

27. Space-to-space quantum interferometric communications -- 27.1. Introduction -- 27.2. The generalized N-slit quantum interference equations -- 27.3. The generation and transmission of interferometric characters -- 27.4. The inherent quantum security mechanism -- 27.5. Discussion

28. Quanta pair sources for quantum entanglement experiments -- 28.1. Introduction -- 28.2. Positron-electron annihilation -- 28.3. Atomic Ca emission -- 28.4. Type I spontaneous parametric down-conversion -- 28.5. Type II spontaneous parametric down-conversion -- 28.6. Quantum description of parametric down-conversion -- 28.7. Alternative quantum pair sources -- 28.8. Further horizons

29. Quantum interferometric principles -- 29.1. Introduction -- 29.2. Fundamental principles of quantum mechanics -- 29.3. Nonlocality of the photon -- 29.4. Indistinguishability and Dirac's identities -- 29.5. Quantum measurements -- 29.6. Quantum entanglement at the foundations of quantum mechanics -- 29.7. On the origin of the Dirac-Feynman principle -- 29.8. Discussion

30. On the interpretation of quantum mechanics -- 30.1. Introduction -- 30.2. Philosophical aspects of quantum entanglement -- 30.3. Quantum critical -- 30.4. Conceptual 'problems' in quantum mechanics -- 30.5. Quantum luminaries -- 30.6. The pragmatic perspective -- 30.7. The Dirac-Feynman-Lamb doctrine -- 30.8. The all-important probability amplitude -- 30.9. The quantumness derived from the nonlocality of the photon -- 30.10. The best interpretation of quantum mechanics -- 30.11. Discussion

Apppendix A. Revisiting the Pryce-Ward probability amplitude for quantum entanglement -- Apppendix B. Classical and quantum interference -- Apppendix C. Interferometers and their probability amplitudes -- Apppendix D. Polarization rotators for quantum entanglement -- Apppendix E. Vectors, vector products, matrices, and tensors for quantum entanglement -- Apppendix F. Trigonometric identities -- Apppendix G. More on quantum notation -- Apppendix H. From quantum principles to classical optics -- Apppendix I. Introduction to complex conjugates and Hamilton's quaternions -- Apppendix J. Some open ended quantum questions.

Quantum entanglement (QE) has rapidly become a subject of great interest in academia, industry, and government research institutions. This book builds on the first edition of Fundamentals of Quantum Entanglement to provide a transparent and more insightful introduction for graduate students, scientists, and engineers. It is also a highly useful education tool for those practitioners that were not aware of the physical origin of quantum entanglement: the Dirac-Wheeler-Pryce-Ward physics. The new edition includes an expansion on topics such as quantum entropy and quantum time. The book provides a direct, practical, and transparent introduction to the principles and physics of quantum entanglement. It does so whilst utilizing an interferometric approach based on Dirac-Feynman superposition probability amplitudes. Part of IOP Series in Coherent Sources, Quantum Fundamentals, and Applications.

Scientist and engineers working on quantum entanglement programs around the world. An equally relevant market are graduate students. Science professionals and engineering management administering quantum programs.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

F J Duarte is a laser and quantum physicist based in the USA since the 1980s. He has extensive experience in the academic, industrial and defense sectors. He is an editor/author of 15 laser and quantum optics books and sole author of three books (Tunable Laser Optics, Quantum Optics for Engineers, and Fundamentals of Quantum Entanglement). He has made key original contributions to the fields of narrow-linewidth tunable laser oscillators, nanoparticle solid-state laser materials, coherent emission from electrically-pumped organic semiconductors, and laser interferometry. He is also the author of the multiple-prism grating dispersion theory applicable to tunable lasers, laser pulse compression, and coherent microscopy. His contributions have been applied to numerous scientific fields from astronomy to nanophotonics. In 1987 he was elected Fellow of the Australian Institute of Physics, and in 1993 he was elected Fellow of the Optical Society of America. Dr Duarte has been awarded the Engineering Excellence Award and the David Richardson Medal from the Optical Society (Optica).

Title from PDF title page (viewed on October 5, 2022).

There are no comments for this item.

Log in to your account to post a comment.