Normal view MARC view ISBD view

High performance polymers and their nanocomposites / edited by Visakh P.M. and Semkin A.O.

Contributor(s): P. M., Visakh [editor.] | O., Semkin A [editor.].
Material type: materialTypeLabelBookPublisher: Hoboken, NJ : Wiley-Scrivener, 2018Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781119363811; 1119363810; 9781119363880; 1119363888; 9781119363910; 1119363918.Subject(s): Polymers | Polymeric composites | Polymeric composites | Polymers | TECHNOLOGY & ENGINEERING / Engineering (General) | TECHNOLOGY & ENGINEERING / ReferenceGenre/Form: Electronic books.Additional physical formats: Print version:: High performance polymers and their nanocompositesDDC classification: 620.1/92 Online resources: Wiley Online Library
Contents:
<P>Preface xv</p> <p><b>1 High-Performance Polymer Nanocomposites and Their Applications: State of Art and New Challenges 1<br /></b><i>PM Visakh</i></p> <p>1.1 Liquid Crystal Polymers 1</p> <p>1.2 Polyamide 4, 6, (PA4,6) 3</p> <p>1.3 Polyacrylamide 4</p> <p>1.4 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-Imide) 5</p> <p>1.5 Thermoplastic Polyimide 5</p> <p>1.6 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) 7</p> <p>1.7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties 9</p> <p>1.8 Poly(ethylene Terephthalate)-PET and Poly(ethylene Naphthalate)-PEN 11</p> <p>1.9 High-Performance Oil Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxydized Natural Rubber (ENR) 14</p> <p>1.10 High Performance Unsaturated Polyester/f-MWCNTs Nanocomposites Induced by F- Graphene Nanoplatelets 15</p> <p><b>2 Liquid Crystal Polymers 27<br /></b><i>Andreea Irina Barzic, Raluca Marinica Albu and Luminita Ioana Buruiana </i></p> <p>2.1 Introduction and History 27</p> <p>2.2 Polymerization 29</p> <p>2.2.1 Synthesis of Lyotropic LC Polymers 30</p> <p>2.2.2 Synthesis of Thermotropic LC Polymers 31</p> <p>2.3 Properties 32</p> <p>2.3.1 Rheology 32</p> <p>2.3.2 Dielectric Behavior 35</p> <p>2.3.3 Magnetic Properties 36</p> <p>2.3.4 Mechanical Properties 36</p> <p>2.3.5 Phases and Morphology 39</p> <p>2.4 Processing 41</p> <p>2.4.1 Injection Molding 41</p> <p>2.4.2 Extrusion 42</p> <p>2.4.3 Free Surface Flow 43</p> <p>2.4.4 LC Polymer Fiber Spinning 44</p> <p>2.5 Blends Based on Liquid Crystal Ppolymers 44</p> <p>2.6 Composites of Liquid Crystal Polymers 46</p> <p>2.7 Applications 49</p> <p>2.7.1 LC Polymers as Optoelectronic Materials 49</p> <p>2.7.2 Liquid Crystalline Polymers in Displays 50</p> <p>2.7.3 Sensors and Actuators 51</p> <p>2.8 Environmental Impact and Recycling 52</p> <p>2.9 Concluding Remarks and Future Trends 54</p> <p>Acknowledgment 54</p> <p><b>3 Polyamide 4,6, (PA4,6) 59<br /></b><i>Emel Kuram and Zeynep Munteha Sahin</i></p> <p>3.1 Introduction and History 59</p> <p>3.2 Polymerization and Fabrication 60</p> <p>3.3 Properties 69</p> <p>3.4 Chemical Stability 72</p> <p>3.5 Compounding and Special Additives 72</p> <p>3.6 Processing 73</p> <p>3.7 Applications 83</p> <p>3.8 Blends of Polyamide 4,6, (PA4,6) 84</p> <p>3.9 Composites of Polyamide 4,6, (PA4,6) 89</p> <p>3.10 Nanocomposites of Polyamide 4,6, (PA4,6) 90</p> <p>3.11 Environmental Impact and Recycling 94</p> <p>3.12 Conclusions 98</p> <p><b>4 Polyacrylamide (PAM) 105<br /></b><i>Małgorzata Wiśniewska</i></p> <p>4.1 Introduction and History 105</p> <p>4.2 Polymerization and Fabrication 107</p> <p>4.3 Properties 110</p> <p>4.4 Chemical Stability 111</p> <p>4.5 Compounding and Special Additives  112</p> <p>4.6 Processing  113</p> <p>4.7 Applications  114</p> <p>4.8 Blends of Polyacrylamide  116</p> <p>4.9 Composites of Polyacrylamide  118</p> <p>4.10 Nanocomposites of Polyacrylamide  119</p> <p>4.11 Environmental Impact and Recycling  121</p> <p>4.12 Conclusions  122</p> <p><b>5 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-imide) 133<br /></b><i>Dhorali Gnanasekaran</i></p> <p>5.1 Introduction 134</p> <p>5.2 Experimental 136</p> <p>5.3 Results and Discussion 138</p> <p>5.4 Conclusions 145</p> <p><b>6 Thermoplastic Polyimide (TPI) 149<br /></b><i>Xiantao Feng and Jialei Liu</i></p> <p>6.1 Introduction and History 149</p> <p>6.2 Polymerization and Fabrication 150</p> <p>6.2.1 Thermoplastic Polyimides Based on BEPA 150</p> <p>6.2.2 Thermoplastic Polyimides based on PMDA 153</p> <p>6.2.3 Thermoplastic Polyimides Based on BTDA 154</p> <p>6.2.4 Thermoplastic Polyimides Based on ODPA 157</p> <p>6.2.5 Thermoplastic Polyimides Based on BPDA 157</p> <p>6.2.6 Thermoplastic Copolyimides 158</p> <p>6.3 Properties 160</p> <p>6.3.1 TPI Based on BEPA 160</p> <p>6.3.2 Thermoplastic Polyimides based on PMDA 163</p> <p>6.3.3 TPI Based on ODPA 163</p> <p>6.3.4 Thermoplastic Polyimides Based on BPDA 168</p> <p>6.3.5 Thermoplastic Copolyimides 170</p> <p>6.4 Chemical Stability 170</p> <p>6.4.1 Hydrolytic Stability 170</p> <p>6.4.2 Oxidative Stability 174</p> <p>6.5 Compounding 175</p> <p>6.5.1 Chloromethylation 175</p> <p>6.5.2 Sulfonation 178</p> <p>6.5.3 Phosphorylation 178</p> <p>6.5.4 Bromination 178</p> <p>6.5.5 Arylation 181</p> <p>6.6 Processing 181</p> <p>6.6.1 Injection Molding 181</p> <p>6.6.2 Compression Molding 182</p> <p>6.6.3 Extrusion Molding 184</p> <p>6.6.4 Coating 184</p> <p>6.6.5 Spinning [40] 186</p> <p>6.7 Applications 186</p> <p>6.7.1 Membranes 186</p> <p>6.7.2 Adhesives 188</p> <p>6.7.3 Composites 189</p> <p>6.7.3.1 Skybond 190</p> <p>6.7.4 Engineering Plastics 190</p> <p>6.7.4.1 VESPEL Plastics 190</p> <p>6.7.4.2 ULTEM Plastics [48, 49] 191</p> <p>6.7.4.3 AURUM Plastics [50] 192</p> <p>6.7.4.3 Ratem Plastics [51] 192</p> <p>6.8 Blends of Thermoplastic Polyimide (TPI) 193</p> <p>6.8.1 TPI Blends with TPI 193</p> <p>6.8.2 Polyamic Acid Blending 195</p> <p>6.9 Composites of Thermoplastic Polyimide (TPI) 196</p> <p>6.9.1 LaRC Composites 197</p> <p>6.9.2 Skybond 202</p> <p>6.9.3 PAI Polyamide-Imide Composites 205</p> <p>6.10 Nanocomposites of Thermoplastic Polyimide (TPI) 208</p> <p>6.10.1 TPI/silver Nanocomposite 208</p> <p>6.10.2 TPI/Fe-FeO Nanocomposite 210</p> <p>6.10.3 TPI/Carbon Nanocomposites 211</p> <p>6.10.4 TPI/CF/TiO2 Nanocomposite 214</p> <p>6.11 Environmental Impact and Recycling 214</p> <p>6.12 Conclusions 215</p> <p><b>7 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) -- A Review 221<br /></b><i>E. Dhanumalayan and Girish M Joshi</i></p> <p>7.1 Introduction 221</p> <p>7.2 Properties of PTFE 223</p> <p>7.2.1 Physical Properties of PTFE 223</p> <p>Surface Properties 223</p> <p>7.2.2 Tribological Property of PTFE Surface 224</p> <p>7.2.3 Mechanical Properties of PTFE 226</p> <p>7.2.4 Chemical Properties of PTFE 228</p> <p>Solubility of PTFE 228</p> <p>7.2.5 Thermal Properties of PTFE 228</p> <p>Thermal transport property of PTFE composites 229</p> <p>7.2.6 Electrical Properties of PTFE 229</p> <p>Dielectric property of PTFE 229</p> <p>7.2.7 Optical and Spectral Properties of PTFE 230</p> <p>7.3 Processing and Casting Techniques of PTFE 231</p> <p>7.3.1 Casting of PTFE by Melt-Processing Method 232</p> <p>7.3.2 Sintering of PTFE 233</p> <p>7.3.3 Molding Techniques of PTFE 233</p> <p>7.3.4 Casting of PTFE by Extrusion 236</p> <p>7.3.5 Solution Blending of PTFE 237</p> <p>7.3.6 PTFE Coating Methods 238</p> <p>7.4 Applications of PTFE in Various Fields 238</p> <p>7.4.1 PTFE in Automotive Industries 238</p> <p>7.4.2 PTFE in Petrochemical and Power Industries 239</p> <p>7.4.3 PTFE in Aerospace Industries 240</p> <p>7.4.4 PTFE in Food Processing Industries 241</p> <p>7.4.5 PTFE Applications in Chemical Industries 242</p> <p>7.4.6 PTFE in Biomedical and Pharmaceutical  Applications 242</p> <p>7.4.7 PTFE in Electrical Applications 243</p> <p>7.4.8 PTFE for Defense Applications 243</p> <p>7.4.9 Application of PTFE Ice-Phobic Surfaces 243</p> <p>7.4.10 Application of PTFE in Water and Air Purification Process 244</p> <p>7.5 Different Forms of PTFE 244</p> <p>7.5.1 Fine Powder of PTFE for Foaming Applications 244</p> <p>7.5.2 Granular Form of PTFE 245</p> <p>7.5.3 Resin Form of PTFE 245</p> <p>7.5.4 Paste Form of PTFE 245</p> <p>7.5.5 Emulsion Form of PTFE 246</p> <p>7.6 Various Grades of PTFE 246</p> <p>7.6.1 Carbon-Reinforced PTFE 246</p> <p>7.6.2 Glass Fiber-Reinforced PTFE 247</p> <p>7.6.3 Bronze-Filled PTFE Composites 247</p> <p>7.6.4 Graphite Filled PTFE 248</p> <p>7.6.5 Molybdenum Disulfide (MoS2)-Filled PTFE 248</p> <p>7.7 Nanocomposites of PTFE 248</p> <p>7.8 Future Prospects of
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references.

Description based on print version record and CIP data provided by publisher; resource not viewed.

<P>Preface xv</p> <p><b>1 High-Performance Polymer Nanocomposites and Their Applications: State of Art and New Challenges 1<br /></b><i>PM Visakh</i></p> <p>1.1 Liquid Crystal Polymers 1</p> <p>1.2 Polyamide 4, 6, (PA4,6) 3</p> <p>1.3 Polyacrylamide 4</p> <p>1.4 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-Imide) 5</p> <p>1.5 Thermoplastic Polyimide 5</p> <p>1.6 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) 7</p> <p>1.7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties 9</p> <p>1.8 Poly(ethylene Terephthalate)-PET and Poly(ethylene Naphthalate)-PEN 11</p> <p>1.9 High-Performance Oil Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxydized Natural Rubber (ENR) 14</p> <p>1.10 High Performance Unsaturated Polyester/f-MWCNTs Nanocomposites Induced by F- Graphene Nanoplatelets 15</p> <p><b>2 Liquid Crystal Polymers 27<br /></b><i>Andreea Irina Barzic, Raluca Marinica Albu and Luminita Ioana Buruiana </i></p> <p>2.1 Introduction and History 27</p> <p>2.2 Polymerization 29</p> <p>2.2.1 Synthesis of Lyotropic LC Polymers 30</p> <p>2.2.2 Synthesis of Thermotropic LC Polymers 31</p> <p>2.3 Properties 32</p> <p>2.3.1 Rheology 32</p> <p>2.3.2 Dielectric Behavior 35</p> <p>2.3.3 Magnetic Properties 36</p> <p>2.3.4 Mechanical Properties 36</p> <p>2.3.5 Phases and Morphology 39</p> <p>2.4 Processing 41</p> <p>2.4.1 Injection Molding 41</p> <p>2.4.2 Extrusion 42</p> <p>2.4.3 Free Surface Flow 43</p> <p>2.4.4 LC Polymer Fiber Spinning 44</p> <p>2.5 Blends Based on Liquid Crystal Ppolymers 44</p> <p>2.6 Composites of Liquid Crystal Polymers 46</p> <p>2.7 Applications 49</p> <p>2.7.1 LC Polymers as Optoelectronic Materials 49</p> <p>2.7.2 Liquid Crystalline Polymers in Displays 50</p> <p>2.7.3 Sensors and Actuators 51</p> <p>2.8 Environmental Impact and Recycling 52</p> <p>2.9 Concluding Remarks and Future Trends 54</p> <p>Acknowledgment 54</p> <p><b>3 Polyamide 4,6, (PA4,6) 59<br /></b><i>Emel Kuram and Zeynep Munteha Sahin</i></p> <p>3.1 Introduction and History 59</p> <p>3.2 Polymerization and Fabrication 60</p> <p>3.3 Properties 69</p> <p>3.4 Chemical Stability 72</p> <p>3.5 Compounding and Special Additives 72</p> <p>3.6 Processing 73</p> <p>3.7 Applications 83</p> <p>3.8 Blends of Polyamide 4,6, (PA4,6) 84</p> <p>3.9 Composites of Polyamide 4,6, (PA4,6) 89</p> <p>3.10 Nanocomposites of Polyamide 4,6, (PA4,6) 90</p> <p>3.11 Environmental Impact and Recycling 94</p> <p>3.12 Conclusions 98</p> <p><b>4 Polyacrylamide (PAM) 105<br /></b><i>Małgorzata Wiśniewska</i></p> <p>4.1 Introduction and History 105</p> <p>4.2 Polymerization and Fabrication 107</p> <p>4.3 Properties 110</p> <p>4.4 Chemical Stability 111</p> <p>4.5 Compounding and Special Additives  112</p> <p>4.6 Processing  113</p> <p>4.7 Applications  114</p> <p>4.8 Blends of Polyacrylamide  116</p> <p>4.9 Composites of Polyacrylamide  118</p> <p>4.10 Nanocomposites of Polyacrylamide  119</p> <p>4.11 Environmental Impact and Recycling  121</p> <p>4.12 Conclusions  122</p> <p><b>5 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-imide) 133<br /></b><i>Dhorali Gnanasekaran</i></p> <p>5.1 Introduction 134</p> <p>5.2 Experimental 136</p> <p>5.3 Results and Discussion 138</p> <p>5.4 Conclusions 145</p> <p><b>6 Thermoplastic Polyimide (TPI) 149<br /></b><i>Xiantao Feng and Jialei Liu</i></p> <p>6.1 Introduction and History 149</p> <p>6.2 Polymerization and Fabrication 150</p> <p>6.2.1 Thermoplastic Polyimides Based on BEPA 150</p> <p>6.2.2 Thermoplastic Polyimides based on PMDA 153</p> <p>6.2.3 Thermoplastic Polyimides Based on BTDA 154</p> <p>6.2.4 Thermoplastic Polyimides Based on ODPA 157</p> <p>6.2.5 Thermoplastic Polyimides Based on BPDA 157</p> <p>6.2.6 Thermoplastic Copolyimides 158</p> <p>6.3 Properties 160</p> <p>6.3.1 TPI Based on BEPA 160</p> <p>6.3.2 Thermoplastic Polyimides based on PMDA 163</p> <p>6.3.3 TPI Based on ODPA 163</p> <p>6.3.4 Thermoplastic Polyimides Based on BPDA 168</p> <p>6.3.5 Thermoplastic Copolyimides 170</p> <p>6.4 Chemical Stability 170</p> <p>6.4.1 Hydrolytic Stability 170</p> <p>6.4.2 Oxidative Stability 174</p> <p>6.5 Compounding 175</p> <p>6.5.1 Chloromethylation 175</p> <p>6.5.2 Sulfonation 178</p> <p>6.5.3 Phosphorylation 178</p> <p>6.5.4 Bromination 178</p> <p>6.5.5 Arylation 181</p> <p>6.6 Processing 181</p> <p>6.6.1 Injection Molding 181</p> <p>6.6.2 Compression Molding 182</p> <p>6.6.3 Extrusion Molding 184</p> <p>6.6.4 Coating 184</p> <p>6.6.5 Spinning [40] 186</p> <p>6.7 Applications 186</p> <p>6.7.1 Membranes 186</p> <p>6.7.2 Adhesives 188</p> <p>6.7.3 Composites 189</p> <p>6.7.3.1 Skybond 190</p> <p>6.7.4 Engineering Plastics 190</p> <p>6.7.4.1 VESPEL Plastics 190</p> <p>6.7.4.2 ULTEM Plastics [48, 49] 191</p> <p>6.7.4.3 AURUM Plastics [50] 192</p> <p>6.7.4.3 Ratem Plastics [51] 192</p> <p>6.8 Blends of Thermoplastic Polyimide (TPI) 193</p> <p>6.8.1 TPI Blends with TPI 193</p> <p>6.8.2 Polyamic Acid Blending 195</p> <p>6.9 Composites of Thermoplastic Polyimide (TPI) 196</p> <p>6.9.1 LaRC Composites 197</p> <p>6.9.2 Skybond 202</p> <p>6.9.3 PAI Polyamide-Imide Composites 205</p> <p>6.10 Nanocomposites of Thermoplastic Polyimide (TPI) 208</p> <p>6.10.1 TPI/silver Nanocomposite 208</p> <p>6.10.2 TPI/Fe-FeO Nanocomposite 210</p> <p>6.10.3 TPI/Carbon Nanocomposites 211</p> <p>6.10.4 TPI/CF/TiO2 Nanocomposite 214</p> <p>6.11 Environmental Impact and Recycling 214</p> <p>6.12 Conclusions 215</p> <p><b>7 Performance Properties and Applications of Polytetrafluoroethylene (PTFE) -- A Review 221<br /></b><i>E. Dhanumalayan and Girish M Joshi</i></p> <p>7.1 Introduction 221</p> <p>7.2 Properties of PTFE 223</p> <p>7.2.1 Physical Properties of PTFE 223</p> <p>Surface Properties 223</p> <p>7.2.2 Tribological Property of PTFE Surface 224</p> <p>7.2.3 Mechanical Properties of PTFE 226</p> <p>7.2.4 Chemical Properties of PTFE 228</p> <p>Solubility of PTFE 228</p> <p>7.2.5 Thermal Properties of PTFE 228</p> <p>Thermal transport property of PTFE composites 229</p> <p>7.2.6 Electrical Properties of PTFE 229</p> <p>Dielectric property of PTFE 229</p> <p>7.2.7 Optical and Spectral Properties of PTFE 230</p> <p>7.3 Processing and Casting Techniques of PTFE 231</p> <p>7.3.1 Casting of PTFE by Melt-Processing Method 232</p> <p>7.3.2 Sintering of PTFE 233</p> <p>7.3.3 Molding Techniques of PTFE 233</p> <p>7.3.4 Casting of PTFE by Extrusion 236</p> <p>7.3.5 Solution Blending of PTFE 237</p> <p>7.3.6 PTFE Coating Methods 238</p> <p>7.4 Applications of PTFE in Various Fields 238</p> <p>7.4.1 PTFE in Automotive Industries 238</p> <p>7.4.2 PTFE in Petrochemical and Power Industries 239</p> <p>7.4.3 PTFE in Aerospace Industries 240</p> <p>7.4.4 PTFE in Food Processing Industries 241</p> <p>7.4.5 PTFE Applications in Chemical Industries 242</p> <p>7.4.6 PTFE in Biomedical and Pharmaceutical  Applications 242</p> <p>7.4.7 PTFE in Electrical Applications 243</p> <p>7.4.8 PTFE for Defense Applications 243</p> <p>7.4.9 Application of PTFE Ice-Phobic Surfaces 243</p> <p>7.4.10 Application of PTFE in Water and Air Purification Process 244</p> <p>7.5 Different Forms of PTFE 244</p> <p>7.5.1 Fine Powder of PTFE for Foaming Applications 244</p> <p>7.5.2 Granular Form of PTFE 245</p> <p>7.5.3 Resin Form of PTFE 245</p> <p>7.5.4 Paste Form of PTFE 245</p> <p>7.5.5 Emulsion Form of PTFE 246</p> <p>7.6 Various Grades of PTFE 246</p> <p>7.6.1 Carbon-Reinforced PTFE 246</p> <p>7.6.2 Glass Fiber-Reinforced PTFE 247</p> <p>7.6.3 Bronze-Filled PTFE Composites 247</p> <p>7.6.4 Graphite Filled PTFE 248</p> <p>7.6.5 Molybdenum Disulfide (MoS2)-Filled PTFE 248</p> <p>7.7 Nanocomposites of PTFE 248</p> <p>7.8 Future Prospects of

There are no comments for this item.

Log in to your account to post a comment.