Normal view MARC view ISBD view

Linguistic Structure Prediction [electronic resource] / by Noah A. Smith.

By: Smith, Noah A [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Synthesis Lectures on Human Language Technologies: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2011Edition: 1st ed. 2011.Description: XX, 248 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783031021435.Subject(s): Artificial intelligence | Natural language processing (Computer science) | Computational linguistics | Artificial Intelligence | Natural Language Processing (NLP) | Computational LinguisticsAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 006.3 Online resources: Click here to access online
Contents:
Representations and Linguistic Data -- Decoding: Making Predictions -- Learning Structure from Annotated Data -- Learning Structure from Incomplete Data -- Beyond Decoding: Inference.
In: Springer Nature eBookSummary: A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference.
    average rating: 0.0 (0 votes)
No physical items for this record

Representations and Linguistic Data -- Decoding: Making Predictions -- Learning Structure from Annotated Data -- Learning Structure from Incomplete Data -- Beyond Decoding: Inference.

A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference.

There are no comments for this item.

Log in to your account to post a comment.