Normal view MARC view ISBD view

Long-acting drug delivery systems : pharmaceutical, clinical, and regulatory aspects / edited by Eneko Larraneta, Thakur Raghu Raj Singh, Ryan F. Donnelly.

Contributor(s): Larraneta, Eneko | Singh, Thakur Raghu Raj | Donnelly, Ryan F.
Material type: materialTypeLabelBookSeries: Woodhead Publishing series in biomaterials: Publisher: Duxford : Woodhead Publishing, 2022Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128217597; 0128217596.Subject(s): Drug delivery systems | Drug delivery systems -- Technological innovations | Drugs -- Controlled release | Biomedical materials | Drug Delivery Systems | Delayed-Action Preparations | Biocompatible Materials | Biomedical and Dental Materials | Syst�emes d'administration de m�edicaments | Syst�emes d'administration de m�edicaments -- Innovations | M�edicaments-retard | Biomat�eriaux | Biomedical materials | Drug delivery systems | Drugs -- Controlled releaseAdditional physical formats: Print version:: Long-acting drug delivery systems.; Print version:: Long-acting drug delivery systemsDDC classification: 615.6 Online resources: ScienceDirect
Contents:
Front Cover -- Long-Acting Drug Delivery Systems -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Overview of the clinical current needs and potential applications for long-acting and implantable delivery systems -- 1.1 Introduction -- 1.2 LADDS versus conventional routes for drug administration -- 1.3 Current applications of long-acting drug delivery system -- 1.3.1 Contraception -- 1.3.2 Cancer -- 1.3.3 Ocular diseases -- 1.3.4 Chronic conditions and other applications -- 1.4 Future applications of long-acting drug delivery system -- References -- 2 Classification, material types, and design approaches of long-acting and implantable drug delivery systems -- 2.1 Introduction -- 2.2 Implantable polymeric drug delivery device classification -- 2.2.1 Solid implants -- 2.2.1.1 Passive implants -- 2.2.1.2 Active implants -- 2.2.2 Injectable long-acting formulations -- 2.2.2.1 Long-acting nano/microparticle suspensions -- 2.2.2.2 In situ forming implants -- Phase separation systems -- Hydrogels -- Organogels -- 2.3 Mechanism of drug release from implantable and long-acting drug delivery systems -- 2.3.1 Mechanism of drug release from solid implants -- 2.3.2 Mechanism of release from nano/microparticulate injectable formulations -- 2.3.3 Mechanism of release from in situ forming implants -- 2.4 Materials used for implantable and long-acting drug delivery systems manufacturing -- 2.4.1 Materials used for solid implant manufacturing -- 2.4.1.1 Polymeric materials -- Biodegradable polymers -- Aliphatic polyesters -- Poly(lactic acid) -- Poly(glycolic acid) -- Poly(lactic-co-glycolic acid) -- Poly(caprolactone) -- Other biodegradable polymers -- Non biodegradable polymers -- Poly(siloxanes) -- Poly(ethylene-vinyl acetate) -- Polyurethanes -- 2.4.1.2 Natural polymers -- Cellulose -- Chitosan -- Silk -- 2.4.1.3 Nonpolymeric materials.
Metals -- Hydroxyapatite and tricalcium phosphate -- Other nonpolymeric materials -- 2.4.2 Materials used to prepare injectable long-acting formulations -- 2.4.2.1 Long-acting nano/microparticle suspensions -- 2.4.2.2 In situ forming implants -- Hydrogels -- Hyaluronic acid -- Alginate -- Collagen and gelatin -- Block copolymers -- Poly(N-isopropylacrylamide) -- Organogels -- 2.5 Manufacturing methods of implants and long-acting formulations -- 2.5.1 Manufacturing of solid implants -- 2.5.1.1 Compression -- 2.5.1.2 Solvent casting -- 2.5.1.3 Hot melt extrusion -- 2.5.1.4 Injection molding -- 2.5.1.5 Electrospinning -- 2.5.1.6 3D printing -- 2.5.2 Methods to prepare in situ forming injectable implants -- 2.5.2.1 Methods of micro/nanosuspension and micro/nanoparticle preparation -- Spray drying -- Microfluidics -- Electrospraying -- Milling -- High pressure homogenization and ultrasonication -- 2.6 Implantable polymeric device design -- 2.7 Conclusions -- References -- 3 Long-acting drug delivery systems for ocular therapies -- 3.1 Introduction -- 3.2 Contact lenses and other ocular inserts on the surface as long-acting systems -- 3.3 Long-acting systems for the anterior segment -- 3.4 Periocular delivery of long-acting systems -- 3.5 Long-acting intravitreal systems -- 3.6 Long-acting micro/nanoparticulate delivery systems -- 3.7 In situ forming long-acting implants for ocular delivery -- 3.8 Conclusion and future directions -- References -- 4 Applications of long-lasting and implantable drug delivery systems for cardiovascular disease treatment -- 4.1 Introduction: Cardiovascular disease and atherosclerosis -- 4.2 Pathophysiology of atherosclerosis -- 4.3 Treatments for atherosclerosis -- 4.4 Stenting -- 4.5 Future directions in stent development -- 4.6 3D printing -- 4.7 Stents manufactured via selective laser sintering.
4.8 Stents manufactured via MJ -- 4.9 Stents manufactured via stereolithography -- 4.10 Two-photon polymerization -- 4.11 Targeted treatments for other CVDs -- 4.12 Conclusion -- References -- 5 Implantable and long-lasting drug delivery systems for cancer treatment -- 5.1 Introduction -- 5.2 Implantable drug delivery systems -- 5.2.1 Nonbiodegradable versus biodegradable implantable drug delivery systems -- 5.2.2 Implantable drug delivery systems applications in cancer treatment -- 5.2.2.1 Chemotherapy -- 5.2.2.2 Induce hyperthermia -- 5.2.2.3 Photodynamic therapy -- 5.2.2.4 Gene therapy -- 5.2.2.5 Immunotherapy -- 5.3 Conclusion -- Acknowledgments -- References -- 6 Long-acting drug delivery systems: applications for sexual and reproductive health -- 6.1 Introduction -- 6.2 Sexual and reproductive health physical and pathological challenges -- 6.3 Different approaches to conquer the physical and pathological obstacles associated with sexual and reproductive health -- 6.4 Drug delivery systems used in the field of sexual and reproductive health -- 6.4.1 Nanomedicine and nanoparticles -- 6.4.1.1 Reproductive cancers -- 6.4.1.2 Endometriosis -- 6.4.1.3 Uterine fibroids -- 6.4.1.4 Pregnancy -- 6.4.1.5 HIV and genital infections -- 6.4.1.6 Assisted reproductive technology -- 6.4.1.7 Erectile dysfunction -- 6.4.2 Exosomes -- 6.4.2.1 Breast cancer -- 6.4.2.2 Obstetrical applications of exosomes -- 6.4.3 Liposomes -- 6.4.3.1 Breast cancer -- 6.4.3.2 Ovarian cancer -- 6.4.3.3 Treatment of HIV complications -- 6.4.3.4 Preterm labor -- 6.4.3.5 Prostate cancer -- 6.4.3.6 Erectile dysfunction -- 6.4.4 Micelles -- 6.4.5 Liquid crystals -- 6.4.6 Polymer gels -- 6.4.7 Sperm-hybrid micromotors for drug delivery in the female reproductive tract -- 6.5 Advances in long-acting contraceptive drug delivery systems -- 6.5.1 Copper-bearing intrauterine devices.
6.5.2 Levonorgestrel-releasing intrauterine system -- 6.5.3 Progestin-containing subdermal contraceptive implants -- 6.5.4 Effervescent microneedle patch -- 6.6 Advances in long-acting drug delivery systems in AIDS prophylaxis -- 6.7 Conclusion -- Acknowledgments -- References -- 7 Long-acting drug delivery systems for schizophrenia treatment -- 7.1 Introduction -- 7.1.1 LAI formulations -- 7.2 Who would benefit from LAI antipsychotics: understanding the indications through mechanism -- 7.2.1 Adherence translates into effectiveness -- 7.2.2 Direct medical supervision enhances the outcome -- 7.2.3 Pharmacokinetics of LAI antipsychotics influencing the clinical decisions -- 7.2.4 Pharmacodynamics: differences in dopamine receptor antagonism -- 7.2.5 LAI antipsychotic may reverse altered receptor sensitivity -- 7.2.6 Neuroplasticity -- 7.3 Special indications -- 7.4 Evidence for superiority of LAI antipsychotic over oral antipsychotics -- 7.5 When to start LAI? -- 7.6 Comparative tolerability of LAI antipsychotics -- 7.7 How to initiate LAI antipsychotic? -- 7.8 Choosing among FGA LAIs and SGA LAIs: newer the better or old is gold? -- 7.9 Clinical utility of LAI antipsychotics: the ground reality -- 7.10 Noninjectable long-acting formulations -- 7.11 Conclusion -- Acknowledgment -- Conflict of interest -- References -- 8 Implantable and long-lasting drug delivery systems for infectious, inflammatory, endocrine, and neurodegenerative diseases -- 8.1 Introduction -- 8.2 Implantable and long-lasting drug delivery systems for infectious diseases -- 8.2.1 Tuberculosis -- 8.2.2 Malaria -- 8.2.3 Hepatitis B -- 8.3 Implantable and long-lasting drug delivery systems for inflammatory diseases -- 8.3.1 Osteoarthritis -- 8.3.2 Long-acting delivery of NSAID drugs -- 8.3.3 Long-acting delivery of steroid drugs.
8.4 Implantable and long-lasting drug delivery systems for endocrine diseases -- 8.4.1 Hypothyroidism -- 8.4.2 Growth hormone -- 8.5 Implantable and long-lasting drug delivery systems for neurodegenerative diseases -- References -- 9 Long-lasting drug delivery systems based on microneedles -- 9.1 Introduction -- 9.2 Microneedle array patch as a long-acting drug delivery tool -- 9.2.1 Type of microneedle array patch formulations -- 9.3 Long-acting microneedle array patch formulations -- 9.3.1 Microneedle array patches formulation methodologies for long-acting delivery -- 9.3.1.1 Nano/microparticles delivery by microneedle array patch -- 9.3.1.2 Slow dissolving microneedle array patch -- Poly(lactide-co-glycolide)/polylactic acid microneedle array patches -- Silk fibroin microneedle array patches -- Chitosan microneedle array patches -- 9.3.1.3 Stimuli-responsive smart microneedle array patch -- 9.3.1.4 Hollow microneedles -- 9.4 Application of microneedle array patches for long-acting drug delivery -- 9.4.1 Vaccine -- 9.4.2 Lymphatic targeting -- 9.4.3 HIV infection -- 9.4.4 Contraceptives -- 9.4.5 Antipsychotics -- 9.4.6 Insulin -- 9.4.7 Skin diseases -- 9.5 Laboratory to large-scale considerations -- 9.6 Conclusion and future prospects of microneedle array patch -- References -- 10 Safety, biodegradability, and biocompatibility considerations of long-acting drug delivery systems -- 10.1 Introduction -- 10.2 Biodegradation as per international regulatory bodies -- 10.2.1 Experimental design consideration for the fabrication of biodegradable implants -- 10.2.2 Initial quantification of implants before degradation studies -- 10.2.3 Preparation of biodegradation medium -- 10.2.4 Containers -- 10.2.5 Number of samples -- 10.2.6 Experimental procedure -- 10.2.7 Real-time biodegradation -- 10.2.8 Accelerated degradation -- 10.2.9 Final characterization.
    average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Front Cover -- Long-Acting Drug Delivery Systems -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Overview of the clinical current needs and potential applications for long-acting and implantable delivery systems -- 1.1 Introduction -- 1.2 LADDS versus conventional routes for drug administration -- 1.3 Current applications of long-acting drug delivery system -- 1.3.1 Contraception -- 1.3.2 Cancer -- 1.3.3 Ocular diseases -- 1.3.4 Chronic conditions and other applications -- 1.4 Future applications of long-acting drug delivery system -- References -- 2 Classification, material types, and design approaches of long-acting and implantable drug delivery systems -- 2.1 Introduction -- 2.2 Implantable polymeric drug delivery device classification -- 2.2.1 Solid implants -- 2.2.1.1 Passive implants -- 2.2.1.2 Active implants -- 2.2.2 Injectable long-acting formulations -- 2.2.2.1 Long-acting nano/microparticle suspensions -- 2.2.2.2 In situ forming implants -- Phase separation systems -- Hydrogels -- Organogels -- 2.3 Mechanism of drug release from implantable and long-acting drug delivery systems -- 2.3.1 Mechanism of drug release from solid implants -- 2.3.2 Mechanism of release from nano/microparticulate injectable formulations -- 2.3.3 Mechanism of release from in situ forming implants -- 2.4 Materials used for implantable and long-acting drug delivery systems manufacturing -- 2.4.1 Materials used for solid implant manufacturing -- 2.4.1.1 Polymeric materials -- Biodegradable polymers -- Aliphatic polyesters -- Poly(lactic acid) -- Poly(glycolic acid) -- Poly(lactic-co-glycolic acid) -- Poly(caprolactone) -- Other biodegradable polymers -- Non biodegradable polymers -- Poly(siloxanes) -- Poly(ethylene-vinyl acetate) -- Polyurethanes -- 2.4.1.2 Natural polymers -- Cellulose -- Chitosan -- Silk -- 2.4.1.3 Nonpolymeric materials.

Metals -- Hydroxyapatite and tricalcium phosphate -- Other nonpolymeric materials -- 2.4.2 Materials used to prepare injectable long-acting formulations -- 2.4.2.1 Long-acting nano/microparticle suspensions -- 2.4.2.2 In situ forming implants -- Hydrogels -- Hyaluronic acid -- Alginate -- Collagen and gelatin -- Block copolymers -- Poly(N-isopropylacrylamide) -- Organogels -- 2.5 Manufacturing methods of implants and long-acting formulations -- 2.5.1 Manufacturing of solid implants -- 2.5.1.1 Compression -- 2.5.1.2 Solvent casting -- 2.5.1.3 Hot melt extrusion -- 2.5.1.4 Injection molding -- 2.5.1.5 Electrospinning -- 2.5.1.6 3D printing -- 2.5.2 Methods to prepare in situ forming injectable implants -- 2.5.2.1 Methods of micro/nanosuspension and micro/nanoparticle preparation -- Spray drying -- Microfluidics -- Electrospraying -- Milling -- High pressure homogenization and ultrasonication -- 2.6 Implantable polymeric device design -- 2.7 Conclusions -- References -- 3 Long-acting drug delivery systems for ocular therapies -- 3.1 Introduction -- 3.2 Contact lenses and other ocular inserts on the surface as long-acting systems -- 3.3 Long-acting systems for the anterior segment -- 3.4 Periocular delivery of long-acting systems -- 3.5 Long-acting intravitreal systems -- 3.6 Long-acting micro/nanoparticulate delivery systems -- 3.7 In situ forming long-acting implants for ocular delivery -- 3.8 Conclusion and future directions -- References -- 4 Applications of long-lasting and implantable drug delivery systems for cardiovascular disease treatment -- 4.1 Introduction: Cardiovascular disease and atherosclerosis -- 4.2 Pathophysiology of atherosclerosis -- 4.3 Treatments for atherosclerosis -- 4.4 Stenting -- 4.5 Future directions in stent development -- 4.6 3D printing -- 4.7 Stents manufactured via selective laser sintering.

4.8 Stents manufactured via MJ -- 4.9 Stents manufactured via stereolithography -- 4.10 Two-photon polymerization -- 4.11 Targeted treatments for other CVDs -- 4.12 Conclusion -- References -- 5 Implantable and long-lasting drug delivery systems for cancer treatment -- 5.1 Introduction -- 5.2 Implantable drug delivery systems -- 5.2.1 Nonbiodegradable versus biodegradable implantable drug delivery systems -- 5.2.2 Implantable drug delivery systems applications in cancer treatment -- 5.2.2.1 Chemotherapy -- 5.2.2.2 Induce hyperthermia -- 5.2.2.3 Photodynamic therapy -- 5.2.2.4 Gene therapy -- 5.2.2.5 Immunotherapy -- 5.3 Conclusion -- Acknowledgments -- References -- 6 Long-acting drug delivery systems: applications for sexual and reproductive health -- 6.1 Introduction -- 6.2 Sexual and reproductive health physical and pathological challenges -- 6.3 Different approaches to conquer the physical and pathological obstacles associated with sexual and reproductive health -- 6.4 Drug delivery systems used in the field of sexual and reproductive health -- 6.4.1 Nanomedicine and nanoparticles -- 6.4.1.1 Reproductive cancers -- 6.4.1.2 Endometriosis -- 6.4.1.3 Uterine fibroids -- 6.4.1.4 Pregnancy -- 6.4.1.5 HIV and genital infections -- 6.4.1.6 Assisted reproductive technology -- 6.4.1.7 Erectile dysfunction -- 6.4.2 Exosomes -- 6.4.2.1 Breast cancer -- 6.4.2.2 Obstetrical applications of exosomes -- 6.4.3 Liposomes -- 6.4.3.1 Breast cancer -- 6.4.3.2 Ovarian cancer -- 6.4.3.3 Treatment of HIV complications -- 6.4.3.4 Preterm labor -- 6.4.3.5 Prostate cancer -- 6.4.3.6 Erectile dysfunction -- 6.4.4 Micelles -- 6.4.5 Liquid crystals -- 6.4.6 Polymer gels -- 6.4.7 Sperm-hybrid micromotors for drug delivery in the female reproductive tract -- 6.5 Advances in long-acting contraceptive drug delivery systems -- 6.5.1 Copper-bearing intrauterine devices.

6.5.2 Levonorgestrel-releasing intrauterine system -- 6.5.3 Progestin-containing subdermal contraceptive implants -- 6.5.4 Effervescent microneedle patch -- 6.6 Advances in long-acting drug delivery systems in AIDS prophylaxis -- 6.7 Conclusion -- Acknowledgments -- References -- 7 Long-acting drug delivery systems for schizophrenia treatment -- 7.1 Introduction -- 7.1.1 LAI formulations -- 7.2 Who would benefit from LAI antipsychotics: understanding the indications through mechanism -- 7.2.1 Adherence translates into effectiveness -- 7.2.2 Direct medical supervision enhances the outcome -- 7.2.3 Pharmacokinetics of LAI antipsychotics influencing the clinical decisions -- 7.2.4 Pharmacodynamics: differences in dopamine receptor antagonism -- 7.2.5 LAI antipsychotic may reverse altered receptor sensitivity -- 7.2.6 Neuroplasticity -- 7.3 Special indications -- 7.4 Evidence for superiority of LAI antipsychotic over oral antipsychotics -- 7.5 When to start LAI? -- 7.6 Comparative tolerability of LAI antipsychotics -- 7.7 How to initiate LAI antipsychotic? -- 7.8 Choosing among FGA LAIs and SGA LAIs: newer the better or old is gold? -- 7.9 Clinical utility of LAI antipsychotics: the ground reality -- 7.10 Noninjectable long-acting formulations -- 7.11 Conclusion -- Acknowledgment -- Conflict of interest -- References -- 8 Implantable and long-lasting drug delivery systems for infectious, inflammatory, endocrine, and neurodegenerative diseases -- 8.1 Introduction -- 8.2 Implantable and long-lasting drug delivery systems for infectious diseases -- 8.2.1 Tuberculosis -- 8.2.2 Malaria -- 8.2.3 Hepatitis B -- 8.3 Implantable and long-lasting drug delivery systems for inflammatory diseases -- 8.3.1 Osteoarthritis -- 8.3.2 Long-acting delivery of NSAID drugs -- 8.3.3 Long-acting delivery of steroid drugs.

8.4 Implantable and long-lasting drug delivery systems for endocrine diseases -- 8.4.1 Hypothyroidism -- 8.4.2 Growth hormone -- 8.5 Implantable and long-lasting drug delivery systems for neurodegenerative diseases -- References -- 9 Long-lasting drug delivery systems based on microneedles -- 9.1 Introduction -- 9.2 Microneedle array patch as a long-acting drug delivery tool -- 9.2.1 Type of microneedle array patch formulations -- 9.3 Long-acting microneedle array patch formulations -- 9.3.1 Microneedle array patches formulation methodologies for long-acting delivery -- 9.3.1.1 Nano/microparticles delivery by microneedle array patch -- 9.3.1.2 Slow dissolving microneedle array patch -- Poly(lactide-co-glycolide)/polylactic acid microneedle array patches -- Silk fibroin microneedle array patches -- Chitosan microneedle array patches -- 9.3.1.3 Stimuli-responsive smart microneedle array patch -- 9.3.1.4 Hollow microneedles -- 9.4 Application of microneedle array patches for long-acting drug delivery -- 9.4.1 Vaccine -- 9.4.2 Lymphatic targeting -- 9.4.3 HIV infection -- 9.4.4 Contraceptives -- 9.4.5 Antipsychotics -- 9.4.6 Insulin -- 9.4.7 Skin diseases -- 9.5 Laboratory to large-scale considerations -- 9.6 Conclusion and future prospects of microneedle array patch -- References -- 10 Safety, biodegradability, and biocompatibility considerations of long-acting drug delivery systems -- 10.1 Introduction -- 10.2 Biodegradation as per international regulatory bodies -- 10.2.1 Experimental design consideration for the fabrication of biodegradable implants -- 10.2.2 Initial quantification of implants before degradation studies -- 10.2.3 Preparation of biodegradation medium -- 10.2.4 Containers -- 10.2.5 Number of samples -- 10.2.6 Experimental procedure -- 10.2.7 Real-time biodegradation -- 10.2.8 Accelerated degradation -- 10.2.9 Final characterization.

There are no comments for this item.

Log in to your account to post a comment.