Normal view MARC view ISBD view

High Performance Datacenter Networks [electronic resource] : Architectures, Algorithms, and Opportunities / by Dennis Abts, John Kim.

By: Abts, Dennis [author.].
Contributor(s): Kim, John [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Synthesis Lectures on Computer Architecture: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2011Edition: 1st ed. 2011.Description: XVI, 99 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783031017308.Subject(s): Electronic circuits | Microprocessors | Computer architecture | Electronic Circuits and Systems | Processor ArchitecturesAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Introduction -- Background -- Topology Basics -- High-Radix Topologies -- Routing -- Scalable Switch Microarchitecture -- System Packaging -- Case Studies -- Closing Remarks.
In: Springer Nature eBookSummary: Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applications to communicate and interoperate in an orchestrated and efficient way. This book describes the design and engineering tradeoffs of datacenter networks. It describes interconnection networks from topology and network architecture to routing algorithms, and presents opportunities for taking advantage of the emerging technology trends that are influencing router microarchitecture. With the emergence of "many-core" processor chips, it is evident that we will also need "many-port" routing chips to provide a bandwidth-rich network to avoid the performance limiting effects of Amdahl's Law. We provide an overview of conventional topologies and their routing algorithms and show how technology, signaling rates and cost-effective optics are motivating new network topologies that scale up to millions of hosts. The book also provides detailed case studies of two high performance parallel computer systems and their networks. Table of Contents: Introduction / Background / Topology Basics / High-Radix Topologies / Routing / Scalable Switch Microarchitecture / System Packaging / Case Studies / Closing Remarks.
    average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Background -- Topology Basics -- High-Radix Topologies -- Routing -- Scalable Switch Microarchitecture -- System Packaging -- Case Studies -- Closing Remarks.

Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applications to communicate and interoperate in an orchestrated and efficient way. This book describes the design and engineering tradeoffs of datacenter networks. It describes interconnection networks from topology and network architecture to routing algorithms, and presents opportunities for taking advantage of the emerging technology trends that are influencing router microarchitecture. With the emergence of "many-core" processor chips, it is evident that we will also need "many-port" routing chips to provide a bandwidth-rich network to avoid the performance limiting effects of Amdahl's Law. We provide an overview of conventional topologies and their routing algorithms and show how technology, signaling rates and cost-effective optics are motivating new network topologies that scale up to millions of hosts. The book also provides detailed case studies of two high performance parallel computer systems and their networks. Table of Contents: Introduction / Background / Topology Basics / High-Radix Topologies / Routing / Scalable Switch Microarchitecture / System Packaging / Case Studies / Closing Remarks.

There are no comments for this item.

Log in to your account to post a comment.