Normal view MARC view ISBD view

Computer Architecture Performance Evaluation Methods [electronic resource] / by Lieven Eeckhout.

By: Eeckhout, Lieven [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Synthesis Lectures on Computer Architecture: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2010Edition: 1st ed. 2010.Description: XVI, 132 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783031017278.Subject(s): Electronic circuits | Microprocessors | Computer architecture | Electronic Circuits and Systems | Processor ArchitecturesAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Introduction -- Performance Metrics -- Workload Design -- Analytical Performance Modeling -- Simulation -- Sampled Simulation -- Statistical Simulation -- Parallel Simulation and Hardware Acceleration -- Concluding Remarks.
In: Springer Nature eBookSummary: Performance evaluation is at the foundation of computer architecture research and development. Contemporary microprocessors are so complex that architects cannot design systems based on intuition and simple models only. Adequate performance evaluation methods are absolutely crucial to steer the research and development process in the right direction. However, rigorous performance evaluation is non-trivial as there are multiple aspects to performance evaluation, such as picking workloads, selecting an appropriate modeling or simulation approach, running the model and interpreting the results using meaningful metrics. Each of these aspects is equally important and a performance evaluation method that lacks rigor in any of these crucial aspects may lead to inaccurate performance data and may drive research and development in a wrong direction. The goal of this book is to present an overview of the current state-of-the-art in computer architecture performance evaluation, with a special emphasis on methods for exploring processor architectures. The book focuses on fundamental concepts and ideas for obtaining accurate performance data. The book covers various topics in performance evaluation, ranging from performance metrics, to workload selection, to various modeling approaches including mechanistic and empirical modeling. And because simulation is by far the most prevalent modeling technique, more than half the book's content is devoted to simulation. The book provides an overview of the simulation techniques in the computer designer's toolbox, followed by various simulation acceleration techniques including sampled simulation, statistical simulation, parallel simulation and hardware-accelerated simulation. Table of Contents: Introduction / Performance Metrics / Workload Design / Analytical Performance Modeling / Simulation / Sampled Simulation / Statistical Simulation / Parallel Simulation and Hardware Acceleration / Concluding Remarks.
    average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Performance Metrics -- Workload Design -- Analytical Performance Modeling -- Simulation -- Sampled Simulation -- Statistical Simulation -- Parallel Simulation and Hardware Acceleration -- Concluding Remarks.

Performance evaluation is at the foundation of computer architecture research and development. Contemporary microprocessors are so complex that architects cannot design systems based on intuition and simple models only. Adequate performance evaluation methods are absolutely crucial to steer the research and development process in the right direction. However, rigorous performance evaluation is non-trivial as there are multiple aspects to performance evaluation, such as picking workloads, selecting an appropriate modeling or simulation approach, running the model and interpreting the results using meaningful metrics. Each of these aspects is equally important and a performance evaluation method that lacks rigor in any of these crucial aspects may lead to inaccurate performance data and may drive research and development in a wrong direction. The goal of this book is to present an overview of the current state-of-the-art in computer architecture performance evaluation, with a special emphasis on methods for exploring processor architectures. The book focuses on fundamental concepts and ideas for obtaining accurate performance data. The book covers various topics in performance evaluation, ranging from performance metrics, to workload selection, to various modeling approaches including mechanistic and empirical modeling. And because simulation is by far the most prevalent modeling technique, more than half the book's content is devoted to simulation. The book provides an overview of the simulation techniques in the computer designer's toolbox, followed by various simulation acceleration techniques including sampled simulation, statistical simulation, parallel simulation and hardware-accelerated simulation. Table of Contents: Introduction / Performance Metrics / Workload Design / Analytical Performance Modeling / Simulation / Sampled Simulation / Statistical Simulation / Parallel Simulation and Hardware Acceleration / Concluding Remarks.

There are no comments for this item.

Log in to your account to post a comment.