Normal view MARC view ISBD view

Microelectrofluidic systems : modeling and simulation / Tianhao Zhang, Krishnendu Chakrabarty, Richard B. Fair.

By: Zhang, Tianhao, 1970- [author.].
Contributor(s): Chakrabarty, Krishnendu | Fair, Richard B.
Material type: materialTypeLabelBookSeries: Nano- and microscience, engineering, technology, and medicine series.Publisher: Boca Raton : CRC Press, 2002Description: 1 online resource (xxvi, 257 pages).ISBN: 9781315220253.Subject(s): Biomedical engineering | Microelectromechanical systems | Nanotechnology | Polymerase chain reaction -- AutomationAdditional physical formats: Print version: : No titleDDC classification: 610.28 Online resources: Click here to view.
Contents:
Machine generated contents note: 1 Introduction -- Modeling and Simulation Issues -- Modeling and Simulation Needs -- Computational Architectures for MEFS -- Hierarchical Modeling and Simulation -- Advanced Hierarchical Design Methodology -- Hierarchical Design and Simulation Optimization -- System Design Language Uniformity -- Overview -- 2 Hierarchical Modeling -- MEFS Dynamic Modeling and Simulation at Circuit Level -- Classification of Dynamic System Models -- Fundamental Variables -- Relationships between Fundamental Variables -- Kirchhoffian Networks -- The Equivalent Circuit Modeling Method -- MEFS System-level Modeling and Simulation -- MEFS System-level Modeling -- MEFS System-level Simulation -- Statistical Analysis Capacity -- Conclusion -- 3 SystemC-based Hierarchical Design Environment -- Suitability of Modeling Languages for Hierarchical Design -- VHDL-AMS Suitability for Circuit-level Modeling and Sim- -- ulation -- VHDL Suitability for System-level Modeling and Simula- -- tion -- Performance Language-SLAM -- C/C++ and Matlab -- SystemC -- Building Design Environment with SystemC -- Hierarchical Design Environment -- System-level Modeling Package -- Circuit-level Component Modeling Package -- Numerical Simulation Package -- Optimization/Verification Package -- Conclusion -- 4 System-level Simulation and Performance Evaluation -- MEFS Computing and Architecture -- Architectural Concepts -- Architecture Proposal -- Reconfigurable Architectural Functional Requirements -- Potential Architecture -- Performance Modeling and Simulation -- Hierarchical Modeling and Simulation Methodology -- MEFS Hierarchical Perspective -- Hierarchical Performance Evaluation Strategy -- Modeling and Simulation Language -- Micro-Chemical Handling System -- Stochastic Performance Modeling -- Thermal Catalyzing Process Functionality -- Microvalve Lumped-element Nodal Modeling -- System Performance Analysis and Design Optimization -- Architectural Optimization -- Microsystem Performance Sensitivity Analysis -- Microsystem Performance Estimation with Traffic Variation -- Conclusion -- 5 Circuit-level Optimization -- Simulation Design Methodology -- Bootstrap Method -- Factorial Design -- Optimization Verification -- Subjective Verification -- Objective Verification -- On-target Design Optimization -- Statistical Modeling and Response Analyses -- Statistical Modeling of a Microvalve -- Search for On-target Design Point -- Sensitivity Analysis -- Robust Design Optimization -- Statistical Response Analysis -- Statistical Response Analysis of Microresonators -- Design Optimization of Microvalves -- Application Flexibility Optimization -- Design Approach -- Determining the Performance Flexibility -- Optimization Procedure -- Case Study: Microvalve Modeling and Optimal Design -- Conclusion -- 6 Performance Evaluation -- Introduction -- Polymerase Chain Reaction (PCR) -- PCR Detection for DNA Concentration -- PCR Purification -- Acquisition Assumption -- Continuous-flow PCR System -- Three-way Microvalve -- Sequential Continuous-flow PCR System -- Detectable PCR System -- Reconfigurable PCR System -- Droplet-based PCR System -- A Droplet-based PCR System -- Physical Implementation -- Comparison between Continuous-flow PCR and Droplet PCR -- System Design Complexity -- Performance Evaluation -- Scheduling of Microfluidic Operations for Reconfigurable Two-Dimensional -- Electrowetting Arrays -- Introduction -- Two-dimensional Electrowetting Array -- Schedule Optimization -- Droplet-based PCR Systems -- 7 Conclusion -- A VHDL Queuing Model -- B Hierarchical Environment with SystemC -- References -- Index.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references (pages 243-254) and index.

Machine generated contents note: 1 Introduction -- Modeling and Simulation Issues -- Modeling and Simulation Needs -- Computational Architectures for MEFS -- Hierarchical Modeling and Simulation -- Advanced Hierarchical Design Methodology -- Hierarchical Design and Simulation Optimization -- System Design Language Uniformity -- Overview -- 2 Hierarchical Modeling -- MEFS Dynamic Modeling and Simulation at Circuit Level -- Classification of Dynamic System Models -- Fundamental Variables -- Relationships between Fundamental Variables -- Kirchhoffian Networks -- The Equivalent Circuit Modeling Method -- MEFS System-level Modeling and Simulation -- MEFS System-level Modeling -- MEFS System-level Simulation -- Statistical Analysis Capacity -- Conclusion -- 3 SystemC-based Hierarchical Design Environment -- Suitability of Modeling Languages for Hierarchical Design -- VHDL-AMS Suitability for Circuit-level Modeling and Sim- -- ulation -- VHDL Suitability for System-level Modeling and Simula- -- tion -- Performance Language-SLAM -- C/C++ and Matlab -- SystemC -- Building Design Environment with SystemC -- Hierarchical Design Environment -- System-level Modeling Package -- Circuit-level Component Modeling Package -- Numerical Simulation Package -- Optimization/Verification Package -- Conclusion -- 4 System-level Simulation and Performance Evaluation -- MEFS Computing and Architecture -- Architectural Concepts -- Architecture Proposal -- Reconfigurable Architectural Functional Requirements -- Potential Architecture -- Performance Modeling and Simulation -- Hierarchical Modeling and Simulation Methodology -- MEFS Hierarchical Perspective -- Hierarchical Performance Evaluation Strategy -- Modeling and Simulation Language -- Micro-Chemical Handling System -- Stochastic Performance Modeling -- Thermal Catalyzing Process Functionality -- Microvalve Lumped-element Nodal Modeling -- System Performance Analysis and Design Optimization -- Architectural Optimization -- Microsystem Performance Sensitivity Analysis -- Microsystem Performance Estimation with Traffic Variation -- Conclusion -- 5 Circuit-level Optimization -- Simulation Design Methodology -- Bootstrap Method -- Factorial Design -- Optimization Verification -- Subjective Verification -- Objective Verification -- On-target Design Optimization -- Statistical Modeling and Response Analyses -- Statistical Modeling of a Microvalve -- Search for On-target Design Point -- Sensitivity Analysis -- Robust Design Optimization -- Statistical Response Analysis -- Statistical Response Analysis of Microresonators -- Design Optimization of Microvalves -- Application Flexibility Optimization -- Design Approach -- Determining the Performance Flexibility -- Optimization Procedure -- Case Study: Microvalve Modeling and Optimal Design -- Conclusion -- 6 Performance Evaluation -- Introduction -- Polymerase Chain Reaction (PCR) -- PCR Detection for DNA Concentration -- PCR Purification -- Acquisition Assumption -- Continuous-flow PCR System -- Three-way Microvalve -- Sequential Continuous-flow PCR System -- Detectable PCR System -- Reconfigurable PCR System -- Droplet-based PCR System -- A Droplet-based PCR System -- Physical Implementation -- Comparison between Continuous-flow PCR and Droplet PCR -- System Design Complexity -- Performance Evaluation -- Scheduling of Microfluidic Operations for Reconfigurable Two-Dimensional -- Electrowetting Arrays -- Introduction -- Two-dimensional Electrowetting Array -- Schedule Optimization -- Droplet-based PCR Systems -- 7 Conclusion -- A VHDL Queuing Model -- B Hierarchical Environment with SystemC -- References -- Index.

There are no comments for this item.

Log in to your account to post a comment.