000 03255nam a22005415i 4500
001 978-3-319-28791-1
003 DE-He213
005 20200421112222.0
007 cr nn 008mamaa
008 160404s2016 gw | s |||| 0|eng d
020 _a9783319287911
_9978-3-319-28791-1
024 7 _a10.1007/978-3-319-28791-1
_2doi
050 4 _aQA76.9.D343
072 7 _aUNF
_2bicssc
072 7 _aUYQE
_2bicssc
072 7 _aCOM021030
_2bisacsh
082 0 4 _a006.312
_223
100 1 _aWild, Fridolin.
_eauthor.
245 1 0 _aLearning Analytics in R with SNA, LSA, and MPIA
_h[electronic resource] /
_cby Fridolin Wild.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2016.
300 _aXV, 275 p. 106 illus., 59 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreface -- 1.Introduction -- 2.Learning Theory and Algorithmic Quality Characteristics -- 3.Representing and Analysing Purposiveness with SNA -- 4.Representing and Analysing Meaning with LSA -- 5.Meaningful, Purposive Interaction Analysis -- 6.Visual Analytics Using Vector Maps as Projection Surfaces -- 7.Calibrating for Specific Domains -- 8.Implementation: The MPIA Package -- 9.MPIA in Action: Example Learning Analytics -- 10.Evaluation -- 11.Conclusion and Outlook -- Annex A: Classes and Methods of the MPIA Package.
520 _aThis book introduces Meaningful Purposive Interaction Analysis (MPIA) theory, which combines social network analysis (SNA) with latent semantic analysis (LSA) to help create and analyse a meaningful learning landscape from the digital traces left by a learning community in the co-construction of knowledge. The hybrid algorithm is implemented in the statistical programming language and environment R, introducing packages which capture - through matrix algebra - elements of learners' work with more knowledgeable others and resourceful content artefacts. The book provides comprehensive package-by-package application examples, and code samples that guide the reader through the MPIA model to show how the MPIA landscape can be constructed and the learner's journey mapped and analysed. This building block application will allow the reader to progress to using and building analytics to guide students and support decision-making in learning.
650 0 _aComputer science.
650 0 _aLanguage and languages
_xPhilosophy.
650 0 _aData mining.
650 0 _aMathematics.
650 0 _aSocial sciences.
650 0 _aComputational linguistics.
650 0 _aEducational technology.
650 1 4 _aComputer Science.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aComputational Linguistics.
650 2 4 _aMathematics in the Humanities and Social Sciences.
650 2 4 _aEducational Technology.
650 2 4 _aPhilosophy of Language.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319287898
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-28791-1
912 _aZDB-2-SCS
942 _cEBK
999 _c57464
_d57464