000 | 07260nam a2201513 i 4500 | ||
---|---|---|---|
001 | 5263132 | ||
003 | IEEE | ||
005 | 20200421114112.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 100317t20152001nyua ob 001 0 eng d | ||
020 |
_a9780470544037 _qelectronic |
||
020 |
_z9780780353695 _qprint |
||
020 |
_z0470544031 _qelectronic |
||
024 | 7 |
_a10.1109/9780470544037 _2doi |
|
035 | _a(CaBNVSL)mat05263132 | ||
035 | _a(IDAMS)0b000064810c32a6 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aQA76.87 _b.F54 2001eb |
|
082 | 0 | 4 |
_a006.3/2 _222 |
245 | 0 | 2 |
_aA field guide to dynamical recurrent networks / _cedited by John F. Kolen, Stefan C. Kremer. |
246 | 3 | 0 | _aDynamical recurrent networks |
264 | 1 |
_aNew York : _bIEEE Press, _cc2001. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2009] |
|
300 |
_a1 PDF (xxx, 421 pages) : _billustrations. |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
500 | _a"IEEE order no. PC5809"--T.p. verso. | ||
504 | _aIncludes bibliographical references (p. 379-408) and index. | ||
505 | 0 | _aPreface. Acknowledgments. List of Figures. List of Tables. List of Contributors. INTRODUCTION. Dynamical Recurrent Networks (J. Kolen and S. Kremer). ARCHITECTURES. Networks with Adaptive State Transitions (D. Calvert and S. Kremer). Delay Networks: Buffers to Rescue (T. Lin and C. Giles). Memory Kernels (A. Tsoi, et al.). CAPABILITIES. Dynamical Systems and Iterated Function Systems (J. Kolen). Representation of Discrete States (C. Giles and C. Omlin). Simple Stable Encodings of Finite-State Machines in Dynamic Recurrent Networks (M. Forcada and R. Carrasco). Representation Beyond Finite States: Alternatives to Pushdown Automata (J. Wiles, et al.). Universal Computation and Super-Turing Capabilities (H. Siegelmann). ALGORITHMS. Insertion of Prior Knowledge (P. Frasconi, et al.). Gradient Calculations for Dynamic Recurrent Neural Networks (B. Pearlmutter). Understanding and Explaining DRN Behavior (C. Omlin). LIMITATIONS. Evaluating Benchmark Problems by Random Guessing (J. Schmidhuber, et al.). Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies (S. Hochreiter, et al.. Limiting the Computational Power of Recurrent Neural Networks: VC Dimension and Noise (C. Moore). APPLICATIONS. Dynamical Reccurent Networks in Control (D. Prokhorov, et al.). Sentence Processing and Linguistic Structure (W. Tabor). Neural Network Architectures for the Modeling of Dynamic Systems (H. Zimmerman and R. Neuneier). From Sequences to Data Structures: Theory and Applications (P. Frasconi, et al.). CONCLUSION. Dynamical Recurrent Networks: Looking Back and Looking Forward (S. Kremer and J. Kolen). Bibliography. Glossary. Index. About the Editors. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
520 | _aAcquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 12/21/2015. | ||
650 | 0 | _aNeural networks (Computer science) | |
655 | 0 | _aElectronic books. | |
695 | _aAdaptive systems | ||
695 | _aAlgorithm design and analysis | ||
695 | _aApproximation algorithms | ||
695 | _aApproximation methods | ||
695 | _aArrays | ||
695 | _aArtificial neural networks | ||
695 | _aAutomata | ||
695 | _aBenchmark testing | ||
695 | _aBibliographies | ||
695 | _aBiographies | ||
695 | _aBiological system modeling | ||
695 | _aBooks | ||
695 | _aChaos | ||
695 | _aClustering algorithms | ||
695 | _aComputational modeling | ||
695 | _aComputer architecture | ||
695 | _aComputers | ||
695 | _aConnectors | ||
695 | _aContext | ||
695 | _aControl systems | ||
695 | _aConvolution | ||
695 | _aData preprocessing | ||
695 | _aData structures | ||
695 | _aDecoding | ||
695 | _aDelay | ||
695 | _aDelay effects | ||
695 | _aDoped fiber amplifiers | ||
695 | _aDynamics | ||
695 | _aEncoding | ||
695 | _aEquations | ||
695 | _aFeedforward neural networks | ||
695 | _aFiltering theory | ||
695 | _aFinite impulse response filter | ||
695 | _aGrammar | ||
695 | _aHeuristic algorithms | ||
695 | _aHistory | ||
695 | _aIIR filters | ||
695 | _aIndexes | ||
695 | _aKernel | ||
695 | _aKnowledge engineering | ||
695 | _aLatches | ||
695 | _aLearning systems | ||
695 | _aLogic gates | ||
695 | _aLogistics | ||
695 | _aMagnetic heads | ||
695 | _aMathematical model | ||
695 | _aMaximum likelihood detection | ||
695 | _aNatural languages | ||
695 | _aNeurons | ||
695 | _aNoise | ||
695 | _aNonlinear filters | ||
695 | _aNumerical models | ||
695 | _aOscillators | ||
695 | _aPersonal digital assistants | ||
695 | _aPolynomials | ||
695 | _aPragmatics | ||
695 | _aProposals | ||
695 | _aQuantization | ||
695 | _aReal time systems | ||
695 | _aRecurrent neural networks | ||
695 | _aRegions | ||
695 | _aRobots | ||
695 | _aRobustness | ||
695 | _aSections | ||
695 | _aSilicon | ||
695 | _aSkeleton | ||
695 | _aStability analysis | ||
695 | _aSwitches | ||
695 | _aSyntactics | ||
695 | _aTaxonomy | ||
695 | _aTensile stress | ||
695 | _aTerminology | ||
695 | _aTime series analysis | ||
695 | _aTrademarks | ||
695 | _aTraining | ||
695 | _aTrajectory | ||
695 | _aTransfer functions | ||
695 | _aTransient analysis | ||
695 | _aTurbo codes | ||
695 | _aTuring machines | ||
695 | _aUpper bound | ||
695 | _aViterbi algorithm | ||
695 | _aWireless communication | ||
700 | 1 |
_aKolen, John F., _d1965- |
|
700 | 1 |
_aKremer, Stefan C., _d1968- |
|
710 | 2 |
_aJohn Wiley & Sons, _epublisher. |
|
710 | 2 |
_aIEEE Xplore (Online service), _edistributor. |
|
776 | 0 | 8 |
_iPrint version: _z9780780353695 |
856 | 4 | 2 |
_3Abstract with links to resource _uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5263132 |
942 | _cEBK | ||
999 |
_c59395 _d59395 |