000 08669nam a2201165 i 4500
001 5361011
003 IEEE
005 20200421114117.0
006 m o d
007 cr |n|||||||||
008 071221t20152007nyua o 000 0 eng d
020 _a9780470199091
_qelectronic
020 _z9780470105269
_qprint
020 _z0470199091
_qelectronic
024 7 _a10.1002/9780470199091
_2doi
035 _a(CaBNVSL)mat05361011
035 _a(IDAMS)0b0000648117880f
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQH324.2
_b.C636 2007eb
082 0 4 _a572.028563
_222
245 0 0 _aComputational intelligence in bioinformatics /
_cedited by Gary B. Fogel, David W. Corne and Yi Pan.
264 1 _a[Hoboken, New Jersey] :
_bWiley-IEEE,
_c2007.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2007]
300 _a1 PDF (xix, 355 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE press series on computational intelligence ;
_v7
505 0 _aPreface -- Contributors -- Part One Gene Expression Analysis and Systems Biology -- 1. Hybrid of Neural Classifi er and Swarm Intelligence in Multiclass Cancer Diagnosis with Gene Expression Signatures (Rui Xu, Georgios C. Anagnostopoulos, and Donald C. Wunsch II) -- 1.1 Introduction -- 1.2 Methods and Systems -- 1.3 Experimental Results -- 1.4 Conclusions -- 2. Classifying Gene Expression Profi les with Evolutionary Computation (Jin-Hyuk Hong and Sung-Bae Cho) -- 2.1 DNA Microarray Data Classifi cation -- 2.2 Evolutionary Approach to the Problem -- 2.3 Gene Selection with Speciated Genetic Algorithm -- 2.4 Cancer Classifi ction Based on Ensemble Genetic Programming -- 2.5 Conclusion -- 3. Finding Clusters in Gene Expression Data Using EvoCluster (Patrick C. H. Ma, Keith C. C. Chan, and Xin Yao) -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Evolutionary Clustering Algorithm -- 3.4 Experimental Results -- 3.5 Conclusions -- 4. Gene Networks and Evolutionary Computation (Jennifer Hallinan) -- 4.1 Introduction -- 4.2 Evolutionary Optimization -- 4.3 Computational Network Modeling -- 4.4 Extending Reach of Gene Networks -- 4.5 Network Topology Analysis -- 4.6 Summary -- Part Two Sequence Analysis and Feature Detection -- 5. Fuzzy-Granular Methods for Identifying Marker Genes from Microarray Expression Data (Yuanchen He, Yuchun Tang, Yan-Qing Zhang, and Rajshekhar Sunderraman) -- 5.1 Introduction -- 5.2 Traditional Algorithms for Gene Selection -- 5.3 New Fuzzy-Granular-Based Algorithm for Gene Selection -- 5.4 Simulation -- 5.5 Conclusions -- 6. Evolutionary Feature Selection for Bioinformatics (Laetitia Jourdan, Clarisse Dhaenens, and El-Ghazali Talbi) -- 6.1 Introduction -- 6.2 Evolutionary Algorithms for Feature Selection -- 6.3 Feature Selection for Clustering in Bioinformatics -- 6.4 Feature Selection for Classifi cation in Bioinformatics -- 6.5 Frameworks and Data Sets -- 6.6 Conclusion -- 7. Fuzzy Approaches for the Analysis CpG Island Methylation Patterns (Ozy Sjahputera, Mihail Popescu, James M. Keller, and Charles W. Caldwell).
505 8 _a7.1 Introduction -- 7.2 Methods -- 7.3 Biological Signifi cance -- 7.4 Conclusions -- Part Three Molecular Structure and Phylogenetics -- 8. Protein-Ligand Docking with Evolutionary Algorithms(Ren� Thomsen) -- 8.1 Introduction -- 8.2 Biochemical Background -- 8.3 The Docking Problem -- 8.4 Protein-Ligand Docking Algorithms -- 8.5 Evolutionary Algorithms -- 8.6 Effect of Variation Operators -- 8.7 Differential Evolution -- 8.8 Evaluating Docking Methods -- 8.9 Comparison between Docking Methods -- 8.10 Summary -- 8.11 Future Research Topics -- 9. RNA Secondary Structure Prediction Employing Evolutionary Algorithms (Kay C. Wiese, Alain A. Desch�nes, and Andrew G. Hendriks) -- 9.1 Introduction -- 9.2 Thermodynamic Models -- 9.3 Methods -- 9.4 Results -- 9.5 Conclusion -- 10. Machine Learning Approach for Prediction of Human Mitochondrial Proteins (Zhong Huang, Xuheng Xu, and Xiaohua Hu) -- 10.1 Introduction -- 10.2 Methods and Systems -- 10.3 Results and Discussion -- 10.4 Conclusions -- 11. Phylogenetic Inference Using Evolutionary Algorithms(Clare Bates Congdon) -- 11.1 Introduction -- 11.2 Background in Phylogenetics -- 11.3 Challenges and Opportunities for Evolutionary Computation -- 11.4 One Contribution of Evolutionary Computation: Graphyl -- 11.5 Some Other Contributions of Evolutionary computation -- 11.6 Open Questions and Opportunities -- Part Four Medicine -- 12. Evolutionary Algorithms for Cancer Chemotherapy Optimization (John McCall, Andrei Petrovski, and Siddhartha Shakya) -- 12.1 Introduction -- 12.2 Nature of Cancer -- 12.3 Nature of Chemotherapy -- 12.4 Models of Tumor Growth and Response -- 12.5 Constraints on Chemotherapy -- 12.6 Optimal Control Formulations of Cancer Chemotherapy -- 12.7 Evolutionary Algorithms for Cancer Chemotherapy Optimization -- 12.8 Encoding and Evaluation -- 12.9 Applications of EAs to Chemotherapy Optimization Problems -- 12.10 Related Work -- 12.11 Oncology Workbench -- 12.12 Conclusion -- 13. Fuzzy Ontology-Based Text Mining System for Knowledge Acquisition, Ontology Enhancement, and Query Answering from Biomedical Texts (Lipika Dey and Muhammad Abulaish).
505 8 _a13.1 Introduction -- 13.2 Brief Introduction to Ontologies -- 13.3 Information Retrieval form Biological Text Documents: Related Work -- 13.4 Ontology-Based IE and Knowledge Enhancement System -- 13.5 Document Processor -- 13.6 Biological Relation Extractor -- 13.7 Relation-Based Query Answering -- 13.8 Evaluation of the Biological Relation Extraction Process -- 13.9 Biological Relation Characterizer -- 13.10 Determining Strengths of Generic Biological Relations -- 13.11 Enhancing GENIA to Fuzzy Relational Ontology -- 13.12 Conclusions and Future Work -- References -- Appendix Feasible Biological Relations -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aCombining biology, computer science, mathematics, and statistics, the field of bioinformatics has become a hot new discipline with profound impacts on all aspects of biology and industrial application. Now, Computational Intelligence in Bioinformatics offers an introduction to the topic, covering the most relevant and popular CI methods, while also encouraging the implementation of these methods to readers' research.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aBioinformatics.
650 0 _aComputational intelligence.
655 0 _aElectronic books.
695 _aAccuracy
695 _aAlgorithm design and analysis
695 _aAmino acids
695 _aArrays
695 _aBioinformatics
695 _aBiological cells
695 _aBiological system modeling
695 _aBiomembranes
695 _aCancer
695 _aChemicals
695 _aCloning
695 _aClustering algorithms
695 _aComputational modeling
695 _aDNA
695 _aDrugs
695 _aDynamic programming
695 _aEllipsoids
695 _aEncoding
695 _aEvolution (biology)
695 _aEvolutionary computation
695 _aGene expression
695 _aGenomics
695 _aHeart
695 _aHumans
695 _aIndexes
695 _aLiver
695 _aLungs
695 _aMathematical model
695 _aMeasurement
695 _aNeurons
695 _aNoise measurement
695 _aOntologies
695 _aOptimization
695 _aParticle swarm optimization
695 _aPeptides
695 _aPhylogeny
695 _aPlasmas
695 _aPrediction algorithms
695 _aProbes
695 _aProtein engineering
695 _aProteins
695 _aRNA
695 _aSections
695 _aSpace exploration
695 _aStrain
695 _aSubspace constraints
695 _aSupport vector machines
695 _aThermodynamics
695 _aTraining
695 _aTumors
695 _aVegetation
700 1 _aCorne, David.
700 1 _aPan, Yi.
700 1 _aFogel, Gary,
_d1968-
710 2 _aJohn Wiley & Sons,
_epublisher.
710 2 _aIEEE Xplore (Online service),
_edistributor.
776 0 8 _iPrint version:
_z9780470105269
830 0 _aIEEE press series on computational intelligence ;
_v7
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5361011
942 _cEBK
999 _c59586
_d59586